Laser modulation of superconductivity in a cryogenic widefield nitrogen-vacancy microscope


Abstract in English

Microscopic imaging based on nitrogen-vacancy (NV) centres in diamond, a tool increasingly used for room-temperature studies of condensed matter systems, has recently been extended to cryogenic conditions. However, it remains unclear whether the technique is viable for imaging temperature-sensitive phenomena below 10 K given the inherent laser illumination requirements, especially in a widefield configuration. Here we realise a widefield NV microscope with a field of view of 100 $mu$m and a base temperature of 4 K, and use it to image Abrikosov vortices and transport currents in a superconducting Nb film. We observe the disappearance of vortices upon increase of laser power and their clustering about hot spots upon decrease, indicating that laser powers as low as 1 mW (4 orders of magnitude below the NV saturation) are sufficient to locally quench the superconductivity of the film ($T_c = 9$ K). This significant local heating is confirmed by resistance measurements, which reveal the presence of large temperature gradients (several K) across the film. We then investigate the effect of such gradients on transport currents, where the current path is seen to correlate with the temperature profile even in the fully superconducting phase. In addition to highlighting the role of temperature inhomogeneities in superconductivity phenomena, this work establishes that, under sufficiently low laser power conditions, widefield NV microscopy enables imaging over mesoscopic scales down to 4 K with a submicrometer spatial resolution, providing a new platform for real-space investigations of a range of systems from topological insulators to van der Waals ferromagnets.

Download