Do you want to publish a course? Click here

Science Case for the Einstein Telescope

142   0   0.0 ( 0 )
 Added by Michele Maggiore
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Einstein Telescope (ET), a proposed European ground-based gravitational-wave detector of third-generation, is an evolution of second-generation detectors such as Advanced LIGO, Advanced Virgo, and KAGRA which could be operating in the mid 2030s. ET will explore the universe with gravitational waves up to cosmological distances. We discuss its main scientific objectives and its potential for discoveries in astrophysics, cosmology and fundamental physics.



rate research

Read More

We present the results of the search for an astrophysical gravitational-wave stochastic background during the second Einstein Telescope mock data and science challenge. Assuming that the loudest sources can be detected individually and removed from the data, we show that the residual background can be recovered with an accuracy of $1%$ with the standard cross-correlation statistic, after correction of a systematic bias due to the non-isotropy of the sources.
Einstein Telescope (ET) is a possible third generation ground-based gravitational wave observatory for which a design study is currently being carried out. A brief (and non-exhaustive) overview is given of ETs projected capabilities regarding astrophysics and cosmology through observations of inspiraling and coalescing compact binaries. In particular, ET would give us unprecedented insight into the mass function of neutron stars and black holes, the internal structure of neutron stars, the evolution of coalescence rates over cosmological timescales, and the geometry and dynamics of the Universe as a whole.
160 - Joshua S. Bloom 2009
It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?
The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMTs science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA).
The global network of gravitational-wave detectors has completed three observing runs with $sim 50$ detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Multiple detectors operating at different parts of the globe will provide several pairs of interferometers with longer baselines and an increased network SNR. This will improve the sky localisation of GW events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO Global Network (LGN) in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا