We report on three launches of ballooning $Erigone$ spiders observed in a 0.9 m$^3$ laboratory chamber, controlled under conditions where no significant air motion was possible. These launches were elicited by vertical, downward-oriented electric fields within the chamber, and the motions indicate clearly that negative electric charge on the ballooning silk, subject to the Coulomb force, produced the lift observed in each launch. We estimate the total charge required under plausible assumptions, and find that at least 1.15 nC is necessary in each case. The charge is likely to be non-uniformly distributed, favoring initial longitudinal mobility of electrons along the fresh silk during extrusion. These results demonstrate for the first time that spiders are able to utilize charge on their silk to attain electrostatic flight even in the absence of any aerodynamic lift.