Do you want to publish a course? Click here

Non-steady heating of cool cores of galaxy clusters by ubiquitous turbulence and AGN

140   0   0.0 ( 0 )
 Added by Yutaka Fujita
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent cosmological simulations have shown that turbulence should be generally prevailing in clusters because clusters are continuously growing through matter accretion. Using one-dimensional hydrodynamic simulations, we study the heating of cool-core clusters by the ubiquitous turbulence as well as feedback from the central active galactic nuclei (AGNs) for a wide range of cluster and turbulence parameters, focusing on the global stability of the core. We find that the AGN shows intermittent activities in the presence of moderate turbulence similar to the one observed with Hitomi. The cluster core maintains a quasi-equilibrium state for most of the time because the heating through turbulent diffusion is nearly balanced with radiative cooling. The balance is gradually lost because of slight dominance of the radiative cooling, and the AGN is ignited by increased gas inflow. Finally, when the AGN bursts, the core is heated almost instantaneously. Thanks to the pre-existing turbulence, the heated gas is distributed throughout the core without becoming globally unstable and causing catastrophic cooling, and the core recovers the quasi-equilibrium state. The AGN bursts can be stronger in lower-mass clusters. Predictions of our model can be easily checked with future X-ray missions like XRISM and Athena.



rate research

Read More

66 - T.A. Ensslin , C. Vogt 2005
We argue that the recently reported Kolmogorov-like magnetic turbulence spectrum in the cool core of the Hydra A galaxy cluster can be understood by kinetic energy injection by active galaxies that drives a turbulent non-helical magnetic dynamo into its saturated state. Although dramatic differences exist between small-scale dynamo scenarios, their saturated state is expected to be similar, as we show for three scenarios: the flux rope dynamo, the fluctuation dynamo, and the explosive dynamo. Based on those scenarios, we develop an analytical model of the hydrodynamic and magnetic turbulence in cool cores. The model implies magnetic field strengths that fit well with Faraday rotation measurements and minimum energy estimates for the sample of cool core clusters having such data available. Predictions for magnetic fields in clusters for which the appropriate observational information is still missing, and for yet unobserved quantities like the hydrodynamical turbulence velocity and characteristic length-scale are provided. The underlying dynamo models suggest magnetic intermittency and possibly a large-scale hydrodynamic viscosity. We conclude that the success of the model to explain the field strength in cool core clusters indicates that in general cluster magnetic fields directly reflect hydrodynamical turbulence, also in clusters without cool cores.
We present a systematic study of gas density perturbations in cool cores of high-mass galaxy clusters. We select 12 relaxed clusters from the Cluster Lensing And Supernova survey with Hubble (CLASH) sample and analyze their cool core features observed with the Chandra X-ray Observatory. We focus on the X-ray residual image characteristics after subtracting their global profile of the X-ray surface brightness distribution. We find that all the galaxy clusters in our sample have, at least, both one positive and one negative excess regions in the X-ray residual image, indicating the presence of gas density perturbations. We identify and characterize the locally perturbed regions using our detection algorithm, and extract X-ray spectra of the intracluster medium (ICM). The ICM temperature in the positive excess region is lower than that in the negative excess region, whereas the ICM in both regions is in pressure equilibrium in a systematic manner. These results indicate that gas sloshing in cool cores takes place in more than 80% of relaxed clusters (95% CL). We confirm this physical picture by analyzing synthetic X-ray observations of a cool-core cluster from a hydrodynamic simulation, finding that our detection algorithm can accurately extract both the positive and negative excess regions and can reproduce the temperature difference between them. Our findings support the picture that the gas density perturbations are induced by gas sloshing, and a large fraction of cool-core clusters have undergone gas sloshing, indicating that gas sloshing may be capable of suppressing runaway cooling of the ICM.
185 - I. Zhuravleva 2017
We present the statistical analysis of X-ray surface brightness and gas density fluctuations in cool cores of ten, nearby and bright galaxy clusters that have deep Chandra observations and show observational indications of radio-mechanical AGN feedback. Within the central parts of cool cores the total variance of fluctuations is dominated by isobaric and/or isothermal fluctuations on spatial scales ~ 10-60 kpc, which are likely associated with slow gas motions and bubbles of relativistic plasma. Adiabatic fluctuations associated with weak shocks constitute less than 10 per cent of the total variance in all clusters. The typical amplitude of density fluctuations is small, ~ 10 per cent or less on scales of ~ 10-15 kpc. Subdominant contribution of adiabatic fluctuations and small amplitude of density fluctuations support a model of gentle AGN feedback as opposed to periodically explosive scenarios which are implemented in some numerical simulations. Measured one-component velocities of gas motions are typically below 100-150 km/s on scales < 50 kpc, and can be up to ~ 300 km/s on ~ 100 kpc scales. The non-thermal energy is < 12 per cent of the thermal energy. Regardless of the source that drives these motions the dissipation of the energy in such motions provides heat that is sufficient to balance radiative cooling on average, albeit the uncertainties are large. Presented results here support previous conclusions based on the analysis of the Virgo and Perseus Clusters, and agree with the Hitomi measurements. With next generation observatories like Athena and Lynx, these techniques will be yet more powerful.
156 - C. Nipoti 2015
Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the systems virial temperature. Due to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.
Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the clusters core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number ${rm Fr}lesssim 1$. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. In particular, clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is $sim100-200{,rm km,s^{-1}}$ near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا