Do you want to publish a course? Click here

Secure Wireless Internet of Things Communication using Virtual Private Networks

104   0   0.0 ( 0 )
 Added by Ishaan Lodha
 Publication date 2019
and research's language is English
 Authors Ishaan Lodha




Ask ChatGPT about the research

The Internet of Things (IoT) is an exploding market as well as a important focus area for research. Security is a major issue for IoT products and solutions, with several massive problems that are still commonplace in the field. In this paper, we have successfully minimized the risk of data eavesdropping and tampering over the network by securing these communications using the concept of tunneling. We have implemented this by connecting a router to the internet via a Virtual Private network while using PPTP and L2TP as the underlying protocols for the VPN and exploring their cost benefits, compatibility and most importantly, their feasibility. The main purpose of our paper is to try to secure IoT networks without adversely affecting the selling point of IoT.



rate research

Read More

Structured P2P overlays provide a framework for building distributed applications that are self-configuring, scalable, and resilient to node failures. Such systems have been successfully adopted in large-scale Internet services such as content delivery networks and file sharing; however, widespread adoption in small/medium scales has been limited due in part to security concerns and difficulty bootstrapping in NAT-constrained environments. Nonetheless, P2P systems can be designed to provide guaranteed lookup times, NAT traversal, point-to-point overlay security, and distributed data stores. In this paper we propose a novel way of creating overlays that are both secure and private and a method to bootstrap them using a public overlay. Private overlay nodes use the public overlays distributed data store to discover each other, and the public overlays connections to assist with NAT hole punching and as relays providing STUN and TURN NAT traversal techniques. The security framework utilizes groups, which are created and managed by users through a web based user interface. Each group acts as a Public Key Infrastructure (PKI) relying on the use of a centrally-managed web site providing an automated Certificate Authority (CA). We present a reference implementation which has been used in a P2P VPN (Virtual Private Network). To evaluate our contributions, we apply our techniques to an overlay network modeler, event-driven simulations using simulated time delays, and deployment in the PlanetLab wide-area testbed.
The Internet of Things (IoT) comprises an increasing number of low-power and low-cost devices that autonomously interact with the surrounding environment. As a consequence of their popularity, future IoT deployments will be massive, which demands energy-efficient systems to extend their lifetime and improve the user experience. Radio frequency wireless energy transfer has the potential of powering massive IoT networks, thus eliminating the need for frequent battery replacement by using the so-called power beacons (PBs). In this paper, we provide a framework for minimizing the sum transmit power of the PBs using devices positions information and their current battery state. Our strategy aims to reduce the PBs power consumption and to mitigate the possible impact of the electromagnetic radiation on human health. We also present analytical insights for the case of very distant clusters and evaluate their applicability. Numerical results show that our proposed framework reduces the outage probability as the number of PBs and/or the energy demands increase.
Multipath routing in WSN has been a long wish in security scenario where nodes on next-hop may be targeted to compromise. Many proposals of Multipath routing has been proposed in ADHOC Networks but under constrained from keying environment most seems ignorant. In WSN where crucial data is reported by nodes in deployment area to their securely located Sink, route security has to be guaranteed. Under dynamic load and selective attacks, availability of multiple secure paths is a boon and increases the attacker efforts by many folds. We propose to build a subset of neighbors as our front towards destination node. We also identified forwarders for query by base station. The front is optimally calculated to maintain the security credential and avail multiple paths. According to our knowledge ours is first secure multipath routing protocol for WSN. We established effectiveness of our proposal with mathematical analysis
The Internet of Things combines various earlier areas of research. As a result, research on the subject is still organized around these pre-existing areas: distributed computing with services and objects, networks (usually combining 6lowpan with Zigbee etc. for the last-hop), artificial intelligence and semantic web, and human-computer interaction. We are yet to create a unified model that covers all these perspectives - domain, device, service, agent, etc. In this paper, we propose the concept of cells as units of structure and context in the Internet of things. This allows us to have a unified vocabulary to refer to single entities (whether dumb motes, intelligent spimes, or virtual services), intranets of things, and finally the complete Internet of things. The question that naturally follows, is what criteria we choose to demarcate boundaries; we suggest various possible answers to this question. We also mention how this concept ties into the existing visions and protocols, and suggest how it may be used as the foundation of a formal model.
We propose a roadmap for leveraging the tremendous opportunities the Internet of Things (IoT) has to offer. We argue that the combination of the recent advances in service computing and IoT technology provide a unique framework for innovations not yet envisaged, as well as the emergence of yet-to-be-developed IoT applications. This roadmap covers: emerging novel IoT services, articulation of major research directions, and suggestion of a roadmap to guide the IoT and service computing community to address key IoT service challenges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا