Do you want to publish a course? Click here

Ultrafast dynamics in the Lifshitz-type 5${d}$ pyrochlore antiferromagnet Cd$_{2}$Os$_{2}$O$_{7}$

67   0   0.0 ( 0 )
 Added by Inho Kwak
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the ultrafast dynamics of Cd$_2$Os$_2$O$_7$, a prototype material showing a Lifshitz-type transition as a function of temperature. In the paramagnetic metallic state, the photo-reflectivity shows a sub-picosecond relaxation, followed by a featureless small offset. In the antiferromagnetic state slightly below $T_N$, however, the photo-reflectivity resurges over hundreds of picoseconds, which goes beyond the usual realm of the effective-temperature model. Our observations are consistent with the Lifshitz phase transition of Cd$_2$Os$_2$O$_7$ driven by the evolution of the local magnetic moment.



rate research

Read More

We present AC and DC magnetometry, heat capacity, muon spin relaxation ($mu$SR) and resonant inelastic X-ray scattering (RIXS) studies of the pyrochlore osmate Y$_2$Os$_2$O$_7$. We observe a non-zero effective moment governed by $sqrt{f}mu_{rm{eff}} = 0.417(1),mu_{rm{B}}$ where $f$ is the fraction of Os sites which exhibit a spin, and spin freezing at temperature $T_{rm f} simeq 5,$K, consistent with previous results. The field dependence of magnetisation data shows that the paramagnetic moment is most likely due to large moments $mu_{rm eff} simeq 3,mu_{rm B}$ on only a small fraction $f simeq 0.02$ of Os sites. Comparison of single-ion energy level calculations with the RIXS data yields a non-magnetic $J_{rm eff} = 0$ ground state on the Os$^{4+}$ sites. The spin-orbit interaction, Hunds coupling and trigonal distortion of OsO$_{6}$ octahedra are all important in modelling the experimentally observed spectra. We are able to rule out impurity effects, leaving disorder-related effects such as oxygen non-stoichiometry or site interchange between Os and Y ions as the most plausible explanation for the magnetic response in this material.
159 - Z. L. Dun , X. Li , R. S. Freitas 2015
Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er$_{2}$Ge$_{2}$O$_{7}$ and Yb$_{2}$Ge$_{2}$O$_{7}$ show that both systems are antiferromagnetically ordered in the $Gamma_5$ manifold. The ground state is a $psi_{3}$ phase for the Er sample and a $psi_{2}$ or $psi_{3}$ phase for the Yb sample, which suggests Order by Disorder(ObD) physics. Furthermore, we unify the various magnetic ground states of all known R$_{2}$B$_{2}$O$_{7}$ (R = Er, Yb, B = Sn, Ti, Ge) compounds through the enlarged XY type exchange interaction $J_{pm}$ under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study [Wong et al., Phys. Rev. B 88, 144402, (2013)].
Specific heat, elastic neutron scattering, and muon spin rotation ($mu$SR) experiments have been carried out on a well-characterized sample of stuffed (Pr-rich) Pr$_{2+x}$Ir$_{2-x}$O$_{7-delta}$. Elastic neutron scattering shows the onset of long-range spin-ice 2-in/2-out magnetic order at $T_M = 0.93$ K, with an ordered moment of 1.7(1)$mu_mathrm{B}$/Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 AA and 0.7 ns, respectively. $mu$SR experiments yield an upper bound 2.6(7) mT on the local field $B_mathrm{loc}^{4f}$ at the muon site, which is nearly two orders of magnitude smaller than the expected dipolar field for long-range spin-ice ordering of 1.7$mu_B$ moments (120--270 mT, depending on muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr$^{3+}$ ions by the $mu^+$-induced lattice distortion. For this to be the only effect, however, $sim$160 Pr moments out to a distance of $sim$14 AA must be suppressed. An alternative scenario, which is consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat, invokes slow correlated Pr-moment fluctuations in the ordered state that average $B_mathrm{loc}^{4f}$ on the $mu$SR time scale (${sim}10^{-7}$ s), but are static on the time scale of the elastic neutron scattering experiments (${sim}10^{-9}$ s). In this picture the dynamic muon relaxation suggests a Pr$^{3+}$ $4f$ correlation time of a few nanoseconds, which should be observable in a neutron spin echo experiment.
We report Resonant Inelastic X-ray Scattering (RIXS) study of the magnetic excitation spectrum in a highly insulating Eu$_{2}$Ir$_{2}$O$_{7}$ single crystal that exhibits a metal-insulator transition at $T_{MI}$ = 111(7) K. A propagating magnon mode with 20 meV bandwidth and 28 meV magnon gap is found in the excitation spectrum at 7 K, which is expected in the all-in-all-out (AIAO) magnetically ordered state. This magnetic excitation exhibits substantial softening as temperature is raised towards $T_{MI}$, and turns into highly damped excitation in the paramagnetic phase. Remarkably, the softening occurs throughout the whole Brillouin zone including the zone boundary. This observation is inconsistent with magnon renormalization expected in a local moment system, and indicates that the strength of electron correlation in Eu$_{2}$Ir$_{2}$O$_{7}$ is only moderate, so that electron itinerancy should be taken into account in describing its magnetism.
We report on a novel spin-charge fluctuation in the all-in-all-out pyrochlore magnet Cd$_2$Os$_2$O$_7$, where the spin fluctuation is driven by the conduction of thermally excited electrons/holes and associated fluctuation of Os valence. The fluctuation exhibits an activation energy significantly greater than the spin-charge excitation gap and a peculiar frequency range of $10^{6}$--$10^{10}$ s$^{-1}$. These features are attributed to the hopping motion of carriers as small polarons in the insulating phase, where the polaron state is presumably induced by the magnetoelastic coupling via the strong spin-orbit interaction. Such a coupled spin-charge-phonon fluctuation manifests as a part of the metal-insulator transition that is extended over a wide temperature range due to the modest electron correlation comparable with other interactions characteristic for 5$d$-subshell systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا