No Arabic abstract
We introduce a model for matters-genesis in which both the baryonic and dark matter asymmetries originate from a first-order phase transition in a dark sector with an $SU(3) times SU(2) times U(1)$ gauge group and minimal matter content. In the simplest scenario, we predict that dark matter is a dark neutron with mass either $m_n = 1.33$ GeV or $m_n = 1.58$ GeV. Alternatively, dark matter may be comprised of equal numbers of dark protons and pions. This model, in either scenario, is highly discoverable through both dark matter direct detection and dark photon search experiments. The strong dark matter self interactions may ameliorate small-scale structure problems, while the strongly first-order phase transition may be confirmed at future gravitational wave observatories.
We present a very minimal model for baryogenesis by a dark first-order phase transition. It employs a new dark $SU(2)_{D}$ gauge group with two doublet Higgs bosons, two lepton doublets, and two singlets. The singlets act as a neutrino portal that transfer the generated asymmetry to the Standard Model. The model predicts $Delta N_text{eff} = 0.09-0.13$ detectable by future experiments as well as possible signals from exotic decays of the Higgs and $Z$ bosons and stochastic gravitational waves.
We propose a novel dark matter (DM) scenario based on a first-order phase transition in the early universe. If dark fermions acquire a huge mass gap between true and false vacua, they can barely penetrate into the new phase. Instead, they get trapped in the old phase and accumulate to form macroscopic objects, dubbed Fermi-balls. We show that Fermi-balls can explain the DM abundance in a wide range of models and parameter space, depending most crucially on the dark-fermion asymmetry and the phase transition energy scale (possible up to the Planck scale). They are stable by the balance between fermions quantum pressure against free energy release, hence turn out to be macroscopic in mass and size. However, this scenario generally produces no detectable signals (which may explain the null results of DM searches), except for detectable gravitational waves (GWs) for electroweak scale phase transitions; although the detection of such stochastic GWs does not necessarily imply a Fermi-ball DM scenario.
If dark matter (DM) acquires mass during a first order phase transition, there will be a filtering-out effect when DM enters the expanding bubble. In this paper we study the filtering-out effect for a pseudo-scalar DM, whose mass may partially come from a first order phase transition in the hidden sector. We calculate the ratio of DM that may enter the bubble for various bubble wall velocities as well as various status of DM (in the thermal equilibrium, or out of the thermal equilibrium) at the time of phase transition, which results in small penetration rate that may affect the final relic abundance of the DM. We further study the stochastic gravitational wave signals emitted by the hidden sector phase transition at the space-based interferometer experiments as the smoking-gun of this model.
We investigate the possibility that the Peccei-Quinn phase transition occurs at a temperature far below the symmetry breaking scale. Low phase transition temperatures are typical in supersymmetric theories, where symmetry breaking fields have small masses. We find that QCD axions are abundantly produced just after the phase transition. The observed dark matter abundance is reproduced even if the decay constant is much lower than $10^{11}$ GeV. The produced axions tend to be warm. For some range of the decay constant, the effect of the predicted warmness on structure formation can be confirmed by future observations of 21 cm lines. A portion of parameter space requires a mixing between the Peccei-Quinn symmetry breaking field and the Standard Model Higgs, and predicts an observable rate of rare Kaon decays.
Recently, an indicative evidence of a stochastic process, reported by the NANOGrav Collaboration based on the analysis of 12.5-year pulsar timing array data which might be interpreted as a potential stochastic gravitational wave signal, has aroused keen interest of theorists. The first-order color charge confinement phase transition at the QCD scale could be one of the cosmological sources for the NANOGrav signal. If the phase transition is flavor dependent and happens sequentially, it is important to find that what kind of QCD matter in which the first-order confinement/deconfinement phase transition happens is more likely to be the potential source of the NANOGrav signal during the evolution of the universe. In this paper, we would like to illustrate that the NANOGrav signal could be generated from confinement/deconfinement transition in either heavy static quarks with a zero baryon chemical potential, or quarks with a finite baryon chemical potential. In contrast, the gluon confinement could not possibly be the source for the NANOGrav signal according to the current observation. Future observation will help to distinguish between different scenarios.