The Gottesman-Kitaev-Preskill (GKP) quantum error-correcting code has emerged as a key technique in achieving fault-tolerant quantum computation using photonic systems. Whereas [Baragiola et al., Phys. Rev. Lett. 123, 200502 (2019)] showed that experimentally tractable Gaussian operations combined with preparing a GKP codeword $lvert 0rangle$ suffice to implement universal quantum computation, this implementation scheme involves a distillation of a logical magic state $lvert Hrangle$ of the GKP code, which inevitably imposes a trade-off between implementation cost and fidelity. In contrast, we propose a scheme of preparing $lvert Hrangle$ directly and combining Gaussian operations only with $lvert Hrangle$ to achieve the universality without this magic state distillation. In addition, we develop an analytical method to obtain bounds of fundamental limit on transformation between $lvert Hrangle$ and $lvert 0rangle$, finding an application of quantum resource theories to cost analysis of quantum computation with the GKP code. Our results lead to an essential reduction of required non-Gaussian resources for photonic fault-tolerant quantum computation compared to the previous scheme.