No Arabic abstract
Nanomechanical systems are generally embedded in a macroscopic environment where the sources of thermal noise are difficult to pinpoint. We engineer a silicon nitride membrane optomechanical resonator such that its thermal noise is acoustically driven by a spatially well-defined remote macroscopic bath. This bath acts as an acoustic blackbody emitting and absorbing acoustic radiation through the silicon substrate. Our optomechanical system acts as a sensitive detector for the blackbody temperature and for photoacoustic imaging. We demonstrate that the nanomechanical mode temperature is governed by the blackbody temperature and not by the local material temperature of the resonator. Our work presents a route to mitigate self-heating effects in optomechanical thermometry and other quantum optomechanics experiments, as well as acoustic communication in quantum information.
A critical aspect of quantum mechanics is the nonlocal nature of the wavefunction, a characteristic that may yield unexpected coupling of nominally-isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasi-bound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of textit{nonequilibrium} Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, textit{intruder}, continuum. According to this theory, the observed distortions in the Fano resonance arise textit{only} in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.
The blackbody theory is revisited in the case of thermal electromagnetic fields inside uniaxial anisotropic media in thermal equilibrium with a heat bath. When these media are hyperbolic, we show that the spectral energy density of these fields radically differs from that predicted by Plancks blackbody theory. We demonstrate that the maximum of their spectral energy density is shifted towards frequencies smaller than Wiens frequency making these media apparently colder. Finally, we derive Stefan-Boltzmanns law for hyperbolic media which becomes a quadratic function of the heat bath temperature.
In a two or three dimensional ferromagnetic XXZ model, a low energy excitation mode above a magnetic domain wall is gapless, whereas all of the usual spin wave excitations moving around the whole crystal are gapful. Although this surprising fact was already proved in a mathematically rigorous manner, the gapless excitations have not yet been detected experimentally. For this issue, we show theoretically that the gapless excitations appear as the dynamical fluctuations of the experimental observable, magnetoresistance, in a ferromagnetic wire. We also discuss other methods (e.g., ferromagnetic resonance and neutron scattering) to detect the gapless excitations experimentally.
We theoretically investigated the scheme allowing to avoid destructive space-charge instabilities and to obtain a strong gain at microwave and THz frequencies in semiconductor superlattice devices. Superlattice is subjected to a microwave field and a generation is achieved at some odd harmonics of the pump frequency. Gain arises because of parametric amplification seeded by harmonic generation. Negative differential conductance (NDC) is not a necessary condition for the generation. For the mode of operation with NDC, a limited space-charge accumulation does not sufficiently reduce the gain.
We show how frequency fluctuations of a vibrational mode can be separated from other sources of phase noise. The method is based on the analysis of the time dependence of the complex amplitude of forced vibrations. The moments of the complex amplitude sensitively depend on the frequency noise statistics and its power spectrum. The analysis applies to classical and to quantum vibrations.