Do you want to publish a course? Click here

Self-testing and certification using trusted quantum inputs

84   0   0.0 ( 0 )
 Added by Ivan Supic
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Device-independent certification of quantum devices is of crucial importance for the development of secure quantum information protocols. So far, the most studied scenario corresponds to a system consisting of different non-characterized devices that observers probe with classical inputs to obtain classical outputs. The certification of relevant quantum properties follows from the observation of correlations between these events that do not have a classical counterpart. In the fully device-independent scenario no assumptions are made on the devices and therefore their non-classicality follows from Bell non-locality. There exist other scenarios, known as semidevice-independent, in which assumptions are made on the devices, such as their dimension, and non-classicality is associated to the observation of other types of correlations with no classical analogue. More recently, the use of trusted quantum inputs for certification has been introduced. The goal of this work is to study the power of this formalism and describe self-testing protocols in various settings using trusted quantum inputs. We also relate these different types of self-testing to some of the most basic quantum information protocols, such as quantum teleportation. Finally, we apply our findings to quantum networks and provide methods for estimating the quality of the whole network, as well as of parts of it.



rate research

Read More

While the standard formulation of quantum theory assumes a fixed background causal structure, one can relax this assumption within the so-called process matrix framework. Remarkably, some processes, termed causally nonseparable, are incompatible with a definite causal order. We explore a form of certification of causal nonseparability in a semi-device-independent scenario where the involved parties receive trusted quantum inputs, but whose operations are otherwise uncharacterised. Defining the notion of causally nonseparable distributed measurements, we show that certain causally nonseparable processes which cannot violate any causal inequality, such as the canonical example of the quantum switch, can generate noncausal correlations in such a scenario. Moreover, by further imposing some natural structure to the untrusted operations, we show that all bipartite causally nonseparable process matrices can be certified with trusted quantum inputs.
Self-testing protocols are methods to determine the presence of shared entangled states in a device independent scenario, where no assumptions on the measurements involved in the protocol are made. A particular type of self-testing protocol, called parallel self-testing, can certify the presence of copies of a state, however such protocols typically suffer from the problem of requiring a number of measurements that increases with respect to the number of copies one aims to certify. Here we propose a procedure to transform single-copy self-testing protocols into a procedure that certifies the tensor product of an arbitrary number of (not necessarily equal) quantum states, without increasing the number of parties or measurement choices. Moreover, we prove that self-testing protocols that certify a state and rank-one measurements can always be parallelized to certify many copies of the state. Our results suggest a method to achieve device-independent unbounded randomness expansion with high-dimensional quantum states.
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party (say, Alice) contains a pair of anti-commuting qubit observables. As a consequence, the other party (say, Bob) automatically verifies his set of states remotely steered by Alice, namely the assemblage, is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called robust self-testing of steerable quantum assemblages. In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled states proposed by Bowles et al. [Phys. Rev. Lett. 121, 180503 (2018)], and 2) that it can be used to verify all non-entanglement-breaking channels with fewer assumptions compared with the work of Rosset et al. [Phys. Rev. X 8, 021033 (2018)].
Self-testing is a method to certify devices from the result of a Bell test. Although examples of noise tolerant self-testing are known, it is not clear how to deal efficiently with a finite number of experimental trials to certify the average quality of a device without assuming that it behaves identically at each run. As a result, existing self-testing results with finite statistics have been limited to guarantee the proper working of a device in just one of all experimental trials, thereby limiting their practical applicability. We here derive a method to certify through self-testing that a device produces states on average close to a Bell state without assumption on the actual state at each run. Thus the method is free of the I.I.D. (independent and identically distributed) assumption. Applying this new analysis on the data from a recent loophole-free Bell experiment, we demonstrate the successful distribution of Bell states over 398 meters with an average fidelity of $geq$55.50% at a confidence level of 99%. Being based on a Bell test free of detection and locality loopholes, our certification is evidently device-independent, that is, it does not rely on trust in the devices or knowledge of how the devices work. This guarantees that our link can be integrated in a quantum network for performing long-distance quantum communications with security guarantees that are independent of the details of the actual implementation.
Quantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements of the postprocessing of experimental data. In particular, we consider semi-device independent randomness certification from an experiment using a four dimensional quantum system to violate the classical bound of a random access code. Using state-of-the-art techniques, a smaller quantum violation requires more computational power to demonstrate randomness, which at some point becomes impossible with todays computers although the randomness is (probably) still there. We show that by dedicating more input settings of the experiment to randomness certification, then by more computational postprocessing of the experimental data which corresponds to a quantum violation, one may increase the amount of certified randomness. Furthermore, we introduce a method that significantly lowers the computational complexity of randomness certification. Our results show how more randomness can be generated without altering the hardware and indicate a path for future semi-device independent protocols to follow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا