Aspects of the Normal State Resistivity of Cuprate Superconductors


Abstract in English

Planar normal state resistivity data taken from three families of cuprate superconductors are compared with theoretical calculations from the recent extremely correlated Fermi liquid theory (ECFL). The two hole doped cuprate materials $LSCO$ and $BSLCO$ and the electron doped material $LCCO$ have yielded rich data sets at several densities $delta$ and temperatures T, thereby enabling a systematic comparison with theory. The recent ECFL resistivity calculations for the highly correlated $t$-$t$-$J$ model by us give the resistivity for a wide set of model parameters. After using X-ray diffraction and angle resolved photoemission data to fix parameters appearing in the theoretical resistivity, only one parameter, the magnitude of the hopping $t$, remains undetermined. For each data set, the slope of the experimental resistivity at a single temperature-density point is sufficient to determine $t$, and hence the resistivity on absolute scale at all remaining densities and temperatures. This procedure is shown to give a fair account of the entire data.

Download