No Arabic abstract
To approximate arbitrary unitary transformations on one or more qubits, one must perform transformations which are outside of the Clifford group. The gate most commonly considered for this purpose is the T = diag(1, exp(i pi/4)) gate. As T gates are computationally expensive to perform fault-tolerantly in the most promising error-correction technologies, minimising the T-count (the number of T gates) required to realise a given unitary in a Clifford+T circuit is of great interest. We describe techniques to find circuits with reduced T-count in unitary circuits, which develop on the ideas of Heyfron and Campbell [arXiv:1712.01557] with the help of the ZX calculus. Following [arXiv:1712.01557], we reduce the problem to that of minimising the T count of a CNOT+T circuit. The ZX calculus motivates a further reduction to simplifying a product of commuting pi/4-parity-phase operations: diagonal unitary transformations which induce a relative phase of exp(i pi/4) depending on the outcome of a parity computation on the standard basis (which motivated Kissinger and van de Wetering [1903.10477] to introduce phase gadgets). For a number of standard benchmark circuits, we show that these techniques -- in some cases supplemented by the TODD subroutine of Heyfron and Campbell [arXiv:1712.01557] -- yield T-counts comparable to or better than the best previously known results.
We give a complete presentation for the fragment, ZX&, of the ZX-calculus generated by the Z and X spiders (corresponding to copying and addition) along with the not gate and the and gate. To prove completeness, we freely add a unit and counit to the category TOF generated by the Toffoli gate and ancillary bits, showing that this yields the full subcategory of finite ordinals and functions with objects powers of two; and then perform a two way translation between this category and ZX&. A translation to some extension of TOF, as opposed to some fragment of the ZX-calculus, is a natural choice because of the multiplicative nature of the Toffoli gate. To this end, we show that freely adding counits to the semi-Frobenius algebras of a discrete inverse category is the same as constructing the Cartesian completion. In particular, for a discrete inverse category, the category of classical channels, the Cartesian completion and adding counits all produce the same category. Therefore, applying these constructions to TOF produces the full subcategory of finite ordinals and partial maps with objects powers of two. By glueing together the free counit completion and the free unit completion, this yields qubit multirelations.
We introduce here a new axiomatisation of the rational fragment of the ZX-calculus, a diagrammatic language for quantum mechanics. Compared to the previous axiomatisation introduced in [8], our axiomatisation does not use any metarule , but relies instead on a more natural rule, called the cyclotomic supplementarity rule, that was introduced previously in the literature. Our axiomatisation is only complete for diagrams using rational angles , and is not complete in the general case. Using results on diophantine geometry, we characterize precisely which diagram equality involving arbitrary angles are provable in our framework without any new axioms, and we show that our axiomatisation is continuous, in the sense that a diagram equality involving arbitrary angles is provable iff it is a limit of diagram equalities involving rational angles. We use this result to give a complete characterization of all Euler equations that are provable in this axiomatisation.
ZX-calculus is graphical language for quantum computing which usually focuses on qubits. In this paper, we generalise qubit ZX-calculus to qudit ZX-calculus in any finite dimension by introducing suitable generators, especially a carefully chosen triangle node. As a consequence we obtain a set of rewriting rules which can be seen as a direct generalisation of qubit rules, and a normal form for any qudit vectors. Based on the qudit ZX-calculi, we propose a graphical formalism called qufinite ZX-calculus as a unified framework for all qudit ZX-calculi, which is universal for finite quantum theory due to a normal form for matrix of any finite size. As a result, it would be interesting to give a fine-grained version of the diagrammatic reconstruction of finite quantum theory [Selby2021reconstructing] within the framework of qufinite ZX-calculus.
ZX-calculus is a graphical language for quantum computing which is complete in the sense that calculation in matrices can be done in a purely diagrammatic way. However, all previous universally complete axiomatisations of ZX-calculus have included at least one rule involving trigonometric functions such as sin and cos which makes it difficult for application purpose. In this paper we give an algebraic complete axiomatisation of ZX-calculus instead such that there are only ring operations involved for phases. With this algebraic axiomatisation of ZX-calculus, we are able to establish for the first time a simple translation of diagrams from another graphical language called ZH-calculus and to derive all the ZX-translated rules of ZH-calculus. As a consequence, we have a great benefit that all techniques obtained in ZH-calculus can be transplanted to ZX-calculus, which cant be obtained by just using the completeness of ZX-calculus.
In this paper we exploit the utility of the triangle symbol which has a complicated expression in terms of spider diagrams in ZX-calculus, and its role within the ZX-representation of AND-gates in particular. First, we derive spider nest identities which are of key importance to recent developments in quantum circuit optimisation and T-count reduction in particular. Then, using the same rule set, we prove a completeness theorem for quantum Boolean circuits (QBCs) whose rewriting rules can be directly used for a new method of T-count reduction. We give an algorithm based on this method and show that the results of our algorithm outperform the results of all the previous best non-probabilistic algorithms.