No Arabic abstract
Previous state-of-the-art real-time object detectors have been reported on GPUs which are extremely expensive for processing massive data and in resource-restricted scenarios. Therefore, high efficiency object detectors on CPU-only devices are urgently-needed in industry. The floating-point operations (FLOPs) of networks are not strictly proportional to the running speed on CPU devices, which inspires the design of an exactly fast and accurate object detector. After investigating the concern gaps between classification networks and detection backbones, and following the design principles of efficient networks, we propose a lightweight residual-like backbone with large receptive fields and wide dimensions for low-level features, which are crucial for detection tasks. Correspondingly, we also design a light-head detection part to match the backbone capability. Furthermore, by analyzing the drawbacks of current one-stage detector training strategies, we also propose three orthogonal training strategies---IOU-guided loss, classes-aware weighting method and balanced multi-task training approach. Without bells and whistles, our proposed RefineDetLite achieves 26.8 mAP on the MSCOCO benchmark at a speed of 130 ms/pic on a single-thread CPU. The detection accuracy can be further increased to 29.6 mAP by integrating all the proposed training strategies, without apparent speed drop.
One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of spatial misalignment in predictions between the two tasks. In this work, we propose a Task-aligned One-stage Object Detection (TOOD) that explicitly aligns the two tasks in a learning-based manner. First, we design a novel Task-aligned Head (T-Head) which offers a better balance between learning task-interactive and task-specific features, as well as a greater flexibility to learn the alignment via a task-aligned predictor. Second, we propose Task Alignment Learning (TAL) to explicitly pull closer (or even unify) the optimal anchors for the two tasks during training via a designed sample assignment scheme and a task-aligned loss. Extensive experiments are conducted on MS-COCO, where TOOD achieves a 51.1 AP at single-model single-scale testing. This surpasses the recent one-stage detectors by a large margin, such as ATSS (47.7 AP), GFL (48.2 AP), and PAA (49.0 AP), with fewer parameters and FLOPs. Qualitative results also demonstrate the effectiveness of TOOD for better aligning the tasks of object classification and localization. Code is available at https://github.com/fcjian/TOOD.
Modern object detection methods can be divided into one-stage approaches and two-stage ones. One-stage detectors are more efficient owing to straightforward architectures, but the two-stage detectors still take the lead in accuracy. Although recent work try to improve the one-stage detectors by imitating the structural design of the two-stage ones, the accuracy gap is still significant. In this paper, we propose MimicDet, a novel and efficient framework to train a one-stage detector by directly mimic the two-stage features, aiming to bridge the accuracy gap between one-stage and two-stage detectors. Unlike conventional mimic methods, MimicDet has a shared backbone for one-stage and two-stage detectors, then it branches into two heads which are well designed to have compatible features for mimicking. Thus MimicDet can be end-to-end trained without the pre-train of the teacher network. And the cost does not increase much, which makes it practical to adopt large networks as backbones. We also make several specialized designs such as dual-path mimicking and staggered feature pyramid to facilitate the mimicking process. Experiments on the challenging COCO detection benchmark demonstrate the effectiveness of MimicDet. It achieves 46.1 mAP with ResNeXt-101 backbone on the COCO test-dev set, which significantly surpasses current state-of-the-art methods.
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alleviates this issue by proposing a novel framework to replace the classification task in one-stage detectors with a ranking task, and adopting the Average-Precision loss (AP-loss) for the ranking problem. Due to its non-differentiability and non-convexity, the AP-loss cannot be optimized directly. For this purpose, we develop a novel optimization algorithm, which seamlessly combines the error-driven update scheme in perceptron learning and backpropagation algorithm in deep networks. We verify good convergence property of the proposed algorithm theoretically and empirically. Experimental results demonstrate notable performance improvement in state-of-the-art one-stage detectors based on AP-loss over different kinds of classification-losses on various benchmarks, without changing the network architectures. Code is available at https://github.com/cccorn/AP-loss.
Monocular 3D object detection is an important task for autonomous driving considering its advantage of low cost. It is much more challenging than conventional 2D cases due to its inherent ill-posed property, which is mainly reflected in the lack of depth information. Recent progress on 2D detection offers opportunities to better solving this problem. However, it is non-trivial to make a general adapted 2D detector work in this 3D task. In this paper, we study this problem with a practice built on a fully convolutional single-stage detector and propose a general framework FCOS3D. Specifically, we first transform the commonly defined 7-DoF 3D targets to the image domain and decouple them as 2D and 3D attributes. Then the objects are distributed to different feature levels with consideration of their 2D scales and assigned only according to the projected 3D-center for the training procedure. Furthermore, the center-ness is redefined with a 2D Gaussian distribution based on the 3D-center to fit the 3D target formulation. All of these make this framework simple yet effective, getting rid of any 2D detection or 2D-3D correspondence priors. Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020. Code and models are released at https://github.com/open-mmlab/mmdetection3d.
Recent one-stage object detectors follow a per-pixel prediction approach that predicts both the object category scores and boundary positions from every single grid location. However, the most suitable positions for inferring different targets, i.e., the object category and boundaries, are generally different. Predicting all these targets from the same grid location thus may lead to sub-optimal results. In this paper, we analyze the suitable inference positions for object category and boundaries, and propose a prediction-target-decoupled detector named PDNet to establish a more flexible detection paradigm. Our PDNet with the prediction decoupling mechanism encodes different targets separately in different locations. A learnable prediction collection module is devised with two sets of dynamic points, i.e., dynamic boundary points and semantic points, to collect and aggregate the predictions from the favorable regions for localization and classification. We adopt a two-step strategy to learn these dynamic point positions, where the prior positions are estimated for different targets first, and the network further predicts residual offsets to the positions with better perceptions of the object properties. Extensive experiments on the MS COCO benchmark demonstrate the effectiveness and efficiency of our method. With a single ResNeXt-64x4d-101 as the backbone, our detector achieves 48.7 AP with single-scale testing, which outperforms the state-of-the-art methods by an appreciable margin under the same experimental settings. Moreover, our detector is highly efficient as a one-stage framework. Our code will be public.