Do you want to publish a course? Click here

Refined analysis on the parton distribution functions of the proton

85   0   0.0 ( 0 )
 Added by Xuangong Wang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We explore the application of a two-component model of proton structure functions in the analysis of deep-inelastic scattering (DIS) data at low $Q^2$ and small $x$. This model incorporates both vector meson dominance and the correct photo-production limit. The CJ15 parameterization is applied to the QCD component, in order to take into account effects of order $1/Q^2$ effects, such as target mass corrections and higher twist contributions. The parameters of the leading twist parton distribution functions and higher twist coefficient functions are determined by fitting deep inelastic scattering data. The second moments of the parton distribution functions are extracted and compared with other global fits and lattice determinations.



rate research

Read More

84 - C. Alexandrou 2020
We present, for the first time, an textit{ab initio} calculation of the individual up, down and strange quark helicity parton distribution functions for the proton. The calculation is performed within the twisted mass clover-improved fermion formulation of lattice QCD using one ensemble of dynamical up, down, strange and charm quarks with a pion mass of 260 MeV. The lattice matrix elements are non-perturbatively renormalized and the final results are presented in the $overline{ rm MS}$ scheme at a scale of 2 GeV. We give results on the $Delta u^+(x)$ and $Delta d^+(x)$, including disconnected quark loop contributions, as well as on the $Delta s^+(x)$. For the latter we achieve unprecedented precision compared to the phenomenological estimates.
We present a next-to-leading order (NLO) global DGLAP analysis of nuclear parton distribution functions (nPDFs) and their uncertainties. Carrying out an NLO nPDF analysis for the first time with three different types of experimental input -- deep inelastic $ell$+A scattering, Drell-Yan dilepton production in p+$A$ collisions, and inclusive pion production in d+Au and p+p collisions at RHIC -- we find that these data can well be described in a conventional collinear factorization framework. Although the pion production has not been traditionally included in the global analyses, we find that the shape of the nuclear modification factor $R_{rm dAu}$ of the pion $p_T$-spectrum at midrapidity retains sensitivity to the gluon distributions, providing evidence for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method to quantify the nPDF uncertainties which originate from the uncertainties in the data. In this method the sensitivity of $chi^2$ to the variations of the fitting parameters is mapped out to orthogonal error sets which provide a user-friendly way to calculate how the nPDF uncertainties propagate to any factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the corresponding error sets are collected in our new release called {ttfamily EPS09}. These results should find applications in precision analyses of the signatures and properties of QCD matter at the LHC and RHIC.
We discuss the unintegrated parton distribution functions (UPDFs) introduced by Kimber, Martin and Ryskin (KMR), which are frequently used in phenomenological analyses of hard processes with transverse momenta of partons taken into account. We demonstrate numerically that the commonly used differential definition of the UPDFs leads to erroneous results for large transverse momenta. We identify the reason for that, being the use of the ordinary PDFs instead of the cutoff dependent distribution functions. We show that in phenomenological applications, the integral definition of the UPDFs with the ordinary PDFs can be used.
We present results for renormalized matrix elements related to the unpolarized quasi-distribution function of the $Delta^+$ baryon making use of the large momentum effective theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions with a clover term and pion masses of 250 MeV and 330 MeV are analyzed. We employ momentum smearing to improve the overlap with the boosted $Delta$ state significantly reducing in this way the statistical error of both two- and three-point functions.
We perform a first calculation for the unpolarized parton distribution function of the $Delta^+$ baryon using lattice QCD simulations within the framework of Large Momentum Effective Theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions are utilized with a pion mass of 270 MeV and 360 MeV, respectively. The baryon, which is treated as a stable single-particle state, is boosted with momentum $P_3$ with values ${0.42,0.83,1.25}$ GeV, and we utilize momentum smearing to improve the signal. The unpolarized parton distribution function of $Delta^+$ is obtained using a non-perturbative renormalization and a one-loop formula for the matching, with encouraging precision. In particular, we compute the $overline{d}(x)-overline{u}(x)$ asymmetry and compare it with the same quantity in the nucleon, in a first attempt towards resolving the physical mechanism responsible for generating such asymmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا