No Arabic abstract
This is the final report submitted to NASA for a Probe-class concept study of the Farside Array for Radio Science Investigations of the Dark ages and Exoplanets (FARSIDE), a low radio frequency interferometric array on the farside of the Moon. The design study focused on the instrument, a deployment rover, the lander and base station, and delivered an architecture broadly consistent with the requirements for a Probe mission. This notional architecture consists of 128 dipole antennas deployed across a 10 km area by a rover, and tethered to a base station for central processing, power and data transmission to the Lunar Gateway, or an alternative relay satellite. FARSIDE would provide the capability to image the entire sky each minute in 1400 channels spanning frequencies from 150 kHz to 40 MHz, extending down two orders of magnitude below bands accessible to ground-based radio astronomy. The lunar farside can simultaneously provide isolation from terrestrial radio frequency interference, auroral kilometric radiation, and plasma noise from the solar wind. This would enable near-continuous monitoring of the nearest stellar systems in the search for the radio signatures of coronal mass ejections and energetic particle events, and would also detect the magnetospheres for the nearest candidate habitable exoplanets. Simultaneously, FARSIDE would be used to characterize similar activity in our own solar system, from the Sun to the outer planets. Through precision calibration via an orbiting beacon, and exquisite foreground characterization, FARSIDE would also measure the Dark Ages global 21-cm signal at redshifts from 50-100. It will also be a pathfinder for a larger 21-cm power spectrum instrument by carefully measuring the foreground with high dynamic range.
An array of low-frequency dipole antennas on the lunar farside surface will probe a unique, unexplored epoch in the early Universe called the Dark Ages. It begins at Recombination when neutral hydrogen atoms formed, first revealed by the cosmic microwave background. This epoch is free of stars and astrophysics, so it is ideal to investigate high energy particle processes including dark matter, early Dark Energy, neutrinos, and cosmic strings. A NASA-funded study investigated the design of the instrument and the deployment strategy from a lander of 128 pairs of antenna dipoles across a 10 kmx10 km area on the lunar surface. The antenna nodes are tethered to the lander for central data processing, power, and data transmission to a relay satellite. The array, named FARSIDE, would provide the capability to image the entire sky in 1400 channels spanning frequencies from 100 kHz to 40 MHz, extending down two orders of magnitude below bands accessible to ground-based radio astronomy. The lunar farside can simultaneously provide isolation from terrestrial radio frequency interference, the Earths auroral kilometric radiation, and plasma noise from the solar wind. It is thus the only location within the inner solar system from which sky noise limited observations can be carried out at sub-MHz frequencies. Through precision calibration via an orbiting beacon and exquisite foreground characterization, the farside array would measure the Dark Ages global 21-cm signal at redshifts z~35-200. It will also be a pathfinder for a larger 21-cm power spectrum instrument by carefully measuring the foreground with high dynamic range.
FARSIDE (Farside Array for Radio Science Investigations of the Dark ages and Exoplanets) is a Probe-class concept to place a low radio frequency interferometric array on the farside of the Moon. A NASA-funded design study, focused on the instrument, a deployment rover, the lander and base station, delivered an architecture broadly consistent with the requirements for a Probe mission. This notional architecture consists of 128 dual polarization antennas deployed across a 10 km area by a rover, and tethered to a base station for central processing, power and data transmission to the Lunar Gateway. FARSIDE would provide the capability to image the entire sky each minute in 1400 channels spanning frequencies from 100 kHz to 40 MHz, extending down two orders of magnitude below bands accessible to ground-based radio astronomy. The lunar farside can simultaneously provide isolation from terrestrial radio frequency interference, auroral kilometric radiation, and plasma noise from the solar wind. This would enable near-continuous monitoring of the nearest stellar systems in the search for the radio signatures of coronal mass ejections and energetic particle events, and would also detect the magnetospheres for the nearest candidate habitable exoplanets. Simultaneously, FARSIDE would be used to characterize similar activity in our own solar system, from the Sun to the outer planets, including the hypothetical Planet Nine. Through precision calibration via an orbiting beacon, and exquisite foreground characterization, FARSIDE would also measure the Dark Ages global 21-cm signal at redshifts z=50-100. The unique observational window offered by FARSIDE would enable an abundance of additional science ranging from sounding of the lunar subsurface to characterization of the interstellar medium in the solar system neighborhood.
The farside of the Moon is a pristine, quiet platform to conduct low radio frequency observations of the early Universes Dark Ages, as well as space weather and magnetospheres associated with habitable exoplanets. In this paper, the astrophysics associated with NASA-funded concept studies will be described including a lunar-orbiting spacecraft, DAPPER, that will measure the 21 cm global spectrum at redshifts 40-80, and an array of low frequency dipoles on the lunar farside surface, FARSIDE, that would detect exoplanet magnetic fields. DAPPER observations (17-38 MHz), using a single cross-dipole antenna, will measure the amplitude of the 21 cm spectrum to the level required to distinguish the standard {Lambda}CDM cosmological model from those of additional cooling models possibly produced by exotic physics such as dark matter interactions. FARSIDE has a notional architecture consisting of 128 dipole antennas deployed across a 10 km area by a rover. FARSIDE would image the entire sky each minute in 1400 channels over 0.1-40 MHz. This would enable monitoring of the nearest stellar systems for the radio signatures of coronal mass ejections and energetic particle events, and would also detect the magnetospheres of the nearest candidate habitable exoplanets. In addition, FARSIDE would determine the Dark Ages global 21 cm signal at yet lower frequencies and provide a pathfinder for power spectrum measurements.
Low radio frequency experiments performed on Earth are contaminated by both ionospheric effects and radio frequency interference (RFI) from Earth-based sources. The lunar farside provides a unique environment above the ionosphere where RFI is heavily attenuated by the presence of the Moon. We present electrodynamics simulations of the propagation of radio waves around and through the Moon in order to characterize the level of attenuation on the farside. The simulations are performed for a range of frequencies up to 100 kHz, assuming a spherical lunar shape with an average, constant density. Additionally, we investigate the role of the topography and density profile of the Moon in the propagation of radio waves and find only small effects on the intensity of RFI. Due to the computational demands of performing simulations at higher frequencies, we propose a model for extrapolating the width of the quiet region above 100 kHz that also takes into account height above the lunar surface as well as the intensity threshold chosen to define the quiet region. This model, which we make publicly available through a Python package, allows the size of the radio quiet region to be easily calculated both in orbit or on the surface, making it directly applicable for lunar satellites as well as surface missions.
The NASA Exoplanet Program Analysis Group (ExoPAG) has undertaken an effort to define mission Level 1 requirements for exoplanet direct detection missions at a range of sizes. This report outlines the science goals and requirements for the next exoplanet flagship imaging and spectroscopy mission as determined by the flagship mission Study Analysis Group (SAG) of the NASA Exoplanet Program Analysis Group (ExoPAG). We expect that these goals and requirements will be used to evaluate specific architectures for a future flagship exoplanet imaging and spectroscopy mission, and we expect this effort to serve as a guide and template for similar goals and requirements for smaller missions, an effort that we expect will begin soon. These goals and requirements were discussed, determined, and documented over a 1 year period with contributions from approximately 60 volunteer exoplanet scientists, technologists, and engineers. Numerous teleconferences, emails, and several in-person meetings were conducted to progress on this task, resulting in creating and improving drafts of mission science goals and requirements. That work has been documented in this report as a set of science goals, more detailed objectives, and specific requirements with deliberate flow-down and linkage between each of these sets. The specific requirements have been developed in two categories: Musts are nonnegotiable hard requirements, while Discriminator requirements assign value to performance in areas beyond the floor values set by the Musts. We believe that this framework and content will ensure that this report will be valuable when applied to future mission evaluation activities. We envision that any future exoplanet imaging flagship mission must also be capable of conducting a broad range of other observational astrophysics. We expect that this will be done by the NASA Cosmic Origins Program Analysis Group (COPAG).