Do you want to publish a course? Click here

DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks

145   0   0.0 ( 0 )
 Added by Ao Ren
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The rapidly growing parameter volume of deep neural networks (DNNs) hinders the artificial intelligence applications on resource constrained devices, such as mobile and wearable devices. Neural network pruning, as one of the mainstream model compression techniques, is under extensive study to reduce the number of parameters and computations. In contrast to irregular pruning that incurs high index storage and decoding overhead, structured pruning techniques have been proposed as the promising solutions. However, prior studies on structured pruning tackle the problem mainly from the perspective of facilitating hardware implementation, without analyzing the characteristics of sparse neural networks. The neglect on the study of sparse neural networks causes inefficient trade-off between regularity and pruning ratio. Consequently, the potential of structurally pruning neural networks is not sufficiently mined. In this work, we examine the structural characteristics of the irregularly pruned weight matrices, such as the diverse redundancy of different rows, the sensitivity of different rows to pruning, and the positional characteristics of retained weights. By leveraging the gained insights as a guidance, we first propose the novel block-max weight masking (BMWM) method, which can effectively retain the salient weights while imposing high regularity to the weight matrix. As a further optimization, we propose a density-adaptive regular-block (DARB) pruning that outperforms prior structured pruning work with high pruning ratio and decoding efficiency. Our experimental results show that DARB can achieve 13$times$ to 25$times$ pruning ratio, which are 2.8$times$ to 4.3$times$ improvements than the state-of-the-art counterparts on multiple neural network models and tasks. Moreover, DARB can achieve 14.3$times$ decoding efficiency than block pruning with higher pruning ratio.



rate research

Read More

Parameters of recent neural networks require a huge amount of memory. These parameters are used by neural networks to perform machine learning tasks when processing inputs. To speed up inference, we develop Partition Pruning, an innovative scheme to reduce the parameters used while taking into consideration parallelization. We evaluated the performance and energy consumption of parallel inference of partitioned models, which showed a 7.72x speed up of performance and a 2.73x reduction in the energy used for computing pruned layers of TinyVGG16 in comparison to running the unpruned model on a single accelerator. In addition, our method showed a limited reduction some numbers in accuracy while partitioning fully connected layers.
67 - Jinmian Ye , Guangxi Li , Di Chen 2020
Deep neural networks (DNNs) have achieved outstanding performance in a wide range of applications, e.g., image classification, natural language processing, etc. Despite the good performance, the huge number of parameters in DNNs brings challenges to efficient training of DNNs and also their deployment in low-end devices with limited computing resources. In this paper, we explore the correlations in the weight matrices, and approximate the weight matrices with the low-rank block-term tensors. We name the new corresponding structure as block-term tensor layers (BT-layers), which can be easily adapted to neural network models, such as CNNs and RNNs. In particular, the inputs and the outputs in BT-layers are reshaped into low-dimensional high-order tensors with a similar or improved representation power. Sufficient experiments have demonstrated that BT-layers in CNNs and RNNs can achieve a very large compression ratio on the number of parameters while preserving or improving the representation power of the original DNNs.
128 - Xiaoxi He , Dawei Gao , Zimu Zhou 2019
Many mobile applications demand selective execution of multiple correlated deep learning inference tasks on resource-constrained platforms. Given a set of deep neural networks, each pre-trained for a single task, it is desired that executing arbitrary combinations of tasks yields minimal computation cost. Pruning each network separately yields suboptimal computation cost due to task relatedness. A promising remedy is to merge the networks into a multitask network to eliminate redundancy across tasks before network pruning. However, pruning a multitask network combined by existing network merging schemes cannot minimise the computation cost of every task combination because they do not consider such a future pruning. To this end, we theoretically identify the conditions such that pruning a multitask network minimises the computation of all task combinations. On this basis, we propose Pruning-Aware Merging (PAM), a heuristic network merging scheme to construct a multitask network that approximates these conditions. The merged network is then ready to be further pruned by existing network pruning methods. Evaluations with different pruning schemes, datasets, and network architectures show that PAM achieves up to 4.87x less computation against the baseline without network merging, and up to 2.01x less computation against the baseline with a state-of-the-art network merging scheme.
Recurrent neural networks (RNNs) have recently achieved remarkable successes in a number of applications. However, the huge sizes and computational burden of these models make it difficult for their deployment on edge devices. A practically effective approach is to reduce the overall storage and computation costs of RNNs by network pruning techniques. Despite their successful applications, those pruning methods based on Lasso either produce irregular sparse patterns in weight matrices, which is not helpful in practical speedup. To address these issues, we propose structured pruning method through neuron selection which can reduce the sizes of basic structures of RNNs. More specifically, we introduce two sets of binary random variables, which can be interpreted as gates or switches to the input neurons and the hidden neurons, respectively. We demonstrate that the corresponding optimization problem can be addressed by minimizing the L0 norm of the weight matrix. Finally, experimental results on language modeling and machine reading comprehension tasks have indicated the advantages of the proposed method in comparison with state-of-the-art pruning competitors. In particular, nearly 20 x practical speedup during inference was achieved without losing performance for language model on the Penn TreeBank dataset, indicating the promising performance of the proposed method
In this paper, we propose an adaptive pruning method. This method can cut off the channel and layer adaptively. The proportion of the layer and the channel to be cut is learned adaptively. The pruning method proposed in this paper can reduce half of the parameters, and the accuracy will not decrease or even be higher than baseline.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا