Do you want to publish a course? Click here

Surface background rejection technique for liquid argon dark matter detectors using a thin scintillating layer

103   0   0.0 ( 0 )
 Added by David Gallacher
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Future large liquid argon direct dark matter detectors can benefit greatly from an efficient surface background rejection technique. To aid the development of these large scale detectors a test stand, Argon-1, has been constructed at Carleton University, Ottawa, Canada, in the noble liquid detector development lab. It aims to test a novel surface background rejection technique using a thin layer of slow scintillating material at the surface of the vessel. Through pulse-shape discrimination of the slow light from the scintillating layer, events from the surface of the detector can be discriminated from liquid argon events. The detector will be implemented with high-granularity SiPMs for light detection which will be used to accurately identify surface events to characterize the proposed technique. An overview of the technique and the status of the experiment are discussed here.



rate research

Read More

133 - M.G. Boulay , M. Kuzniak 2019
A technique using layered wavelength shifting, scintillating and non-scintillating films is presented to achieve discrimination of surface $alpha$ events from low-energy nuclear recoils in liquid argon detectors. A discrimination power greater than $10^{8}$, similar to the discrimination possible for electronic recoils in argon, can be achieved by adding a 50 micron layer of scintillator with a suitably slow decay time, approximately 300 ns or greater, to a wavelength-shifter coated surface. The technique would allow suppression of surface $alpha$ events in a very large next-generation argon dark matter experiment (with hundreds of square meters of surface area) without the requirement for position reconstruction, thus allowing utilization of more of the instrumented mass in the dark matter search. The technique could also be used to suppress surface backgrounds in compact argon detectors of low-energy nuclear recoils, for example in measurements of coherent neutrino-nucleus scattering or for sensitive measurements of neutron fluxes.
We describe a technique, applicable to liquid-argon-based dark matter detectors, allowing for discrimination of alpha-decays in detector regions with incomplete light collection from nuclear-recoil-like events. Nuclear recoils and alpha events preferentially excite the liquid argon (LAr) singlet state, which has a decay time of ~6 ns. The wavelength-shifter TPB, which is typically applied to the inside of the active detector volume to make the LAr scintillation photons visible, has a short re-emission time that preserves the LAr scintillation timing. We developed a wavelength-shifting polymeric film - pyrene-doped polystyrene - for the DEAP-3600 detector and describe the production method and characterization. At liquid argon temperature, the films re-emission timing is dominated by a modified exponential decay with time constant of 279(14) ns and has a wavelength-shifting efficiency of 46.4(2.9) % relative to TPB, measured at room temperature. By coating the detector neck (a region outside the active volume where the scintillation light collection efficiency is low) with this film, the visible energy and the scintillation pulse shape of alpha events in the neck region are modified, and we predict that through pulse shape discrimination, the coating will afford a suppression factor of O($10^{5}$) against these events.
The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two $^{210}$Pb sources producing $sim$130 beta decays/hr. In $sim$800 live hours, no events leaked into the 8--115 keV signal region, giving upper limit leakage fraction $1.7 times 10^{-5}$ at 90% C.L., corresponding to $< 0.6$ surface event background in the future 200-kg SuperCDMS SNOLAB experiment.
128 - J. P. Lopez , D. Dujmic , S. Ahlen 2013
The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low pressure gas TPC for detecting Weakly Interacting Massive Particle (WIMP)-nucleon interactions. Optical readout with CCD cameras allows for the detection of the daily modulation of the direction of the dark matter wind. In order to reach sensitivities required for WIMP detection, the detector needs to minimize backgrounds from electron recoils. This paper demonstrates that a simplified CCD analysis achieves $7.3times10^{-5}$ rejection of electron recoils while a charge analysis yields an electron rejection factor of $3.3times10^{-4}$ for events with $^{241}$Am-equivalent ionization energy loss between 40 keV and 200 keV. A combined charge and CCD analysis yields a background-limited upper limit of $1.1times10^{-5}$ (90% confidence level) for the rejection of $gamma$ and electron events. Backgrounds from alpha decays from the field cage are eliminated by introducing a veto electrode that surrounds the sensitive region in the TPC. CCD-specific backgrounds are reduced more than two orders of magnitude when requiring a coincidence with the charge readout.
132 - Sophie Berkman 2020
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their physics goals. In liquid argon time projection chambers (TPCs) the charged particles from neutrino interactions produce ionization electrons which drift in an electric field towards a series of collection wires, and the signal on the wires is used to reconstruct the interaction. The MicroBooNE detector currently collecting data at Fermilab has 8000 wires, and planned future experiments like DUNE will have 100 times more, which means that the time required to reconstruct an event will scale accordingly. Modernization of liquid argon TPC reconstruction code, including vectorization, parallelization and code portability to GPUs, will help to mitigate these challenges. The liquid argon TPC hit finding algorithm within the texttt{LArSoft}xspace framework used across multiple experiments has been vectorized and parallelized. This increases the speed of the algorithm on the order of ten times within a standalone version on Intel architectures. This new version has been incorporated back into texttt{LArSoft}xspace so that it can be generally used. These methods will also be applied to other low-level reconstruction algorithms of the wire signals such as the deconvolution. The applications and performance of this modernized liquid argon TPC wire reconstruction will be presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا