Do you want to publish a course? Click here

Quantum Computing at the Frontiers of Biological Sciences

135   0   0.0 ( 0 )
 Added by Prashant Emani
 Publication date 2019
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

The search for meaningful structure in biological data has relied on cutting-edge advances in computational technology and data science methods. However, challenges arise as we push the limits of scale and complexity in biological problems. Innovation in massively parallel, classical computing hardware and algorithms continues to address many of these challenges, but there is a need to simultaneously consider new paradigms to circumvent current barriers to processing speed. Accordingly, we articulate a view towards quantum computation and quantum information science, where algorithms have demonstrated potential polynomial and exponential computational speedups in certain applications, such as machine learning. The maturation of the field of quantum computing, in hardware and algorithm development, also coincides with the growth of several collaborative efforts to address questions across length and time scales, and scientific disciplines. We use this coincidence to explore the potential for quantum computing to aid in one such endeavor: the merging of insights from genetics, genomics, neuroimaging and behavioral phenotyping. By examining joint opportunities for computational innovation across fields, we highlight the need for a common language between biological data analysis and quantum computing. Ultimately, we consider current and future prospects for the employment of quantum computing algorithms in the biological sciences.



rate research

Read More

181 - Simon Fu 2009
Both external environmental selection and internal lower-level evolution are essential for an integral picture of evolution. This paper proposes that the division of internal evolution into DNA/RNA pattern formation (genotype) and protein functional action (phenotype) resolves a universal conflict between fitness and evolvability. Specifically, this paper explains how this universal conflict drove the emergence of genotype-phenotype division, why this labor division is responsible for the extraordinary complexity of life, and how the specific ways of genotype-phenotype mapping in the labor division determine the paths and forms of evolution and development.
Molecular science is governed by the dynamics of electrons, atomic nuclei, and their interaction with electromagnetic fields. A reliable physicochemical understanding of these processes is crucial for the design and synthesis of chemicals and materials of economic value. Although some problems in this field are adequately addressed by classical mechanics, many require an explicit quantum mechanical description. Such quantum problems represented by exponentially large wave function should naturally benefit from quantum computation on a number of logical qubits that scales only linearly with system size. In this perspective, we focus on the potential of quantum computing for solving relevant problems in the molecular sciences -- molecular physics, chemistry, biochemistry, and materials science.
In the last decade, artificial intelligence (AI) models inspired by the brain have made unprecedented progress in performing real-world perceptual tasks like object classification and speech recognition. Recently, researchers of natural intelligence have begun using those AI models to explore how the brain performs such tasks. These developments suggest that future progress will benefit from increased interaction between disciplines. Here we introduce the Algonauts Project as a structured and quantitative communication channel for interdisciplinary interaction between natural and artificial intelligence researchers. The projects core is an open challenge with a quantitative benchmark whose goal is to account for brain data through computational models. This project has the potential to provide better models of natural intelligence and to gather findings that advance AI. The 2019 Algonauts Project focuses on benchmarking computational models predicting human brain activity when people look at pictures of objects. The 2019 edition of the Algonauts Project is available online: http://algonauts.csail.mit.edu/.
151 - Bank G. Fenyves 2021
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
125 - Bassano Vacchini 2019
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Markovian dynamics, as well as the construction of quantum evolution equations featuring a memory kernel. Connections will be drawn to the corresponding notions in the framework of classical stochastic processes, thus pointing to the key differences between a quantum and classical formalization of the notion of memory effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا