The electronic properties of molecular conductors can be readily varied via physical or chemical pressure as it increases the bandwidth W; this enables crossing the Mott insulator-to-metal phase transition by reducing electronic correlations U/W. Here we introduce an alternative path by increasing the molecular orbitals when partially replacing sulfur by selenium in the constituting bis-(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) molecules of the title compound. We characterize the tuning of the insulating quantum spin liquid state via a Mott transition to the metallic Fermi-liquid state by transport, dielectric, and optical measurements. At this first-order phase transition, metallic regions coexist in the insulating matrix leading to pronounced percolative effects most obvious in a strong enhancement of the dielectric constant at low temperatures.