Do you want to publish a course? Click here

Variational circuit compiler for quantum error correction

134   0   0.0 ( 0 )
 Added by Xiaosi Xu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum error correction is vital for implementing universal quantum computing. A key component is the encoding circuit that maps a product state of physical qubits into the encoded multipartite entangled logical state. Known methods are typically not optimal either in terms of the circuit depth (and therefore the error burden) or the specifics of the target platform, i.e. the native gates and topology of a system. This work introduces a variational compiler for efficiently finding the encoding circuit of general quantum error correcting codes with given quantum hardware. Focusing on the noisy intermediate scale quantum regime, we show how to systematically compile the circuit following an optimising process seeking to minimise the number of noisy operations that are allowed by the noisy quantum hardware or to obtain the highest fidelity of the encoded state with noisy gates. We demonstrate our method by deriving novel encoders for logic states of the five qubit code and the seven qubit Steane code. We describe ways to augment the discovered circuits with error detection. Our method is applicable quite generally for compiling the encoding circuits of quantum error correcting codes.



rate research

Read More

87 - Yuxuan Du , Tao Huang , Shan You 2020
Quantum error mitigation techniques are at the heart of quantum hardware implementation, and are the key to performance improvement of the variational quantum learning scheme (VQLS). Although VQLS is partially robust to noise, both empirical and theoretical results exhibit that noise would rapidly deteriorate the performance of most variational quantum algorithms in large-scale problems. Furthermore, VQLS suffers from the barren plateau phenomenon---the gradient generated by the classical optimizer vanishes exponentially with respect to the qubit number. Here we devise a resource and runtime efficient scheme, the quantum architecture search scheme (QAS), to maximally improve the robustness and trainability of VQLS. In particular, given a learning task, QAS actively seeks an optimal circuit architecture to balance benefits and side-effects brought by adding more quantum gates. Specifically, while more quantum gates enable a stronger expressive power of the quantum model, they introduce a larger amount of noise and a more serious barren plateau scenario. Consequently, QAS can effectively suppress the influence of quantum noise and barren plateaus. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks. Numerical and experimental results show that QAS significantly outperforms conventional variational quantum algorithms with heuristic circuit architectures. Our work provides practical guidance for developing advanced learning-based quantum error mitigation techniques on near-term quantum devices.
The efficient validation of quantum devices is critical for emerging technological applications. In a wide class of use-cases the precise engineering of a Hamiltonian is required both for the implementation of gate-based quantum information processing as well as for reliable quantum memories. Inferring the experimentally realized Hamiltonian through a scalable number of measurements constitutes the challenging task of Hamiltonian learning. In particular, assessing the quality of the implementation of topological codes is essential for quantum error correction. Here, we introduce a neural net based approach to this challenge. We capitalize on a family of exactly solvable models to train our algorithm and generalize to a broad class of experimentally relevant sources of errors. We discuss how our algorithm scales with system size and analyze its resilience towards various noise sources.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to realize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
69 - Sisi Zhou , Liang Jiang 2019
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in the asymptotic limit of large $t$ is restricted to a constant factor. However, situations arise where the constant factor improvement could be significant, yet no effective quantum strategies are known. Here we propose an optimal approximate quantum error correction (AQEC) strategy asymptotically saturating the precision lower bound in the most general adaptive parameter estimation scheme where arbitrary and frequent quantum controls are allowed. We also provide an efficient numerical algorithm finding the optimal code. Finally, we consider highly-biased noise and show that using the optimal AQEC strategy, strong noises are fully corrected, while the estimation precision depends only on the strength of weak noises in the limiting case.
We study the conditions under which a subsystem code is correctable in the presence of noise that results from continuous dynamics. We consider the case of Markovian dynamics as well as the general case of Hamiltonian dynamics of the system and the environment, and derive necessary and sufficient conditions on the Lindbladian and system-environment Hamiltonian, respectively. For the case when the encoded information is correctable during an entire time interval, the conditions we obtain can be thought of as generalizations of the previously derived conditions for decoherence-free subsystems to the case where the subsystem is time dependent. As a special case, we consider conditions for unitary correctability. In the case of Hamiltonian evolution, the conditions for unitary correctability concern only the effect of the Hamiltonian on the system, whereas the conditions for general correctability concern the entire system-environment Hamiltonian. We also derive conditions on the Hamiltonian which depend on the initial state of the environment, as well as conditions for correctability at only a particular moment of time. We discuss possible implications of our results for approximate quantum error correction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا