Do you want to publish a course? Click here

Driven Imposters: Controlling Expectations in Many-Body Systems

150   0   0.0 ( 0 )
 Added by Gerard McCaul
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a framework to control and track the observables of a general solid state system driven by an incident laser field. The main result is a non-linear equation of motion for tracking an observable, together with a constraint on the size of expectations which may be reproduced via tracking. Among other applications, this model provides a potential route to the design of laser fields which cause photo-induced superconductivity in materials above their critical temperature. As a first test, the strategy is used to make the expectation value of the current conform to an arbitrary function under a range of model parameters. Additionally, using two reference spectra for materials in the conducting and insulating regimes respectively, the tracking algorithm is used to make each material mimic the optical spectrum of the other.

rate research

Read More

Here we present an expanded analysis of a model for the manipulation and control of observables in a strongly correlated, many-body system, which was first presented in [McCaul et al., eprint: arXiv:1911.05006]. A field-free, non-linear equation of motion for controlling the expectation value of an essentially arbitrary observable is derived, together with rigorous constraints that determine the limits of controllability. We show that these constraints arise from the physically reasonable assumptions that the system will undergo unitary time evolution, and has enough degrees of freedom for the electrons to be mobile. Furthermore, we give examples of multiple solutions to generating target observable trajectories when the constraints are violated. Ehrenfest theorems are used to further refine the model, and provide a check on the validity of numerical simulations. Finally, the experimental feasibility of implementing the control fields generated by this model is discussed.
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we probe coherent revivals corresponding to quantum many-body scars. Remarkably, we discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer entanglement dynamics in many-body systems and enabling potential applications in quantum information science.
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body systems, as well as the relaxation dynamics towards the steady state. However, new computational tools are required to simulate open quantum many-body systems, as methods developed for closed systems cannot be readily applied. We review several approaches to simulate open many-body systems and point out the advances made in recent years towards the simulation of large system sizes.
Quantum sensors have been shown to be superior to their classical counterparts in terms of resource efficiency. Such sensors have traditionally used the time evolution of special forms of initially entangled states, adaptive measurement basis change, or the ground state of many-body systems tuned to criticality. Here, we propose a different way of doing quantum sensing which exploits the dynamics of a many-body system, initialized in a product state, along with a sequence of projective measurements in a specific basis. The procedure has multiple practical advantages as it: (i) enables remote quantum sensing, protecting a sample from the potentially invasive readout apparatus; and (ii) simplifies initialization by avoiding complex entangled or critical ground states. From a fundamental perspective, it harnesses a resource so far unexploited for sensing, namely, the residual information from the unobserved part of the many-body system after the wave-function collapses accompanying the measurements. By increasing the number of measurement sequences, through the means of a Bayesian estimator, precision beyond the standard limit, approaching the Heisenberg bound, is shown to be achievable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا