Robust Quantum Entanglement at (nearly) Room Temperature


Abstract in English

We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the inverse temperature is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].

Download