Do you want to publish a course? Click here

Finite-time quantum Otto engine: Surpassing the quasi-static efficiency due to friction

306   0   0.0 ( 0 )
 Added by Meesoon Ha
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In finite-time quantum heat engines, some work is consumed to drive a working fluid accompanying coherence, which is called `friction. To understand the role of friction in quantum thermodynamics, we present a couple of finite-time quantum Otto cycles with two different baths: Agarwal versus Lindbladian. We solve them exactly and compare the performance of the Agarwal engine with that of the Lindbladian engine. In particular, we find remarkable and counterintuitive results that the performance of the Agarwal engine due to friction can be much higher than that in the quasistatic limit with the Otto efficiency, and the power of the Lindbladian engine can be nonzero in the short-time limit. Based on additional numerical calculations of these outcomes, we discuss possible origins of such differences between two engines and reveal them. Our results imply that even with an equilibrium bath, a nonequilibrium working fluid brings on the higher performance than what an equilibrium working fluid does.



rate research

Read More

The second law of thermodynamics constrains that the efficiency of heat engines, classical or quantum, cannot be greater than the universal Carnot efficiency. We discover another bound for the efficiency of a quantum Otto heat engine consisting of a harmonic oscillator. Dynamics of the engine is governed by the Lindblad equation for the density matrix, which is mapped to the Fokker-Planck equation for the quasi-probability distribution. Applying stochastic thermodynamics to the Fokker-Planck equation system, we obtain the $hbar$-dependent quantum mechanical bound for the efficiency. It turns out that the bound is tighter than the Carnot efficiency. The engine achieves the bound in the low temperature limit where quantum effects dominate. Our work demonstrates that quantum nature could suppress the performance of heat engines in terms of efficiency bound, work and power output.
132 - Tobias Denzler , Eric Lutz 2020
Stability is an important property of small thermal machines with fluctuating power output. We here consider a finite-time quantum Carnot engine based on a degenerate multilevel system and study the influence of its finite Hilbert space structure on its stability. We optimize in particular its relative work fluctuations with respect to level degeneracy and level number. We find that its optimal performance may surpass those of nondegenerate two-level engines or harmonic oscillator motors. Our results show how to realize high-performance, high-stability cyclic quantum heat engines.
In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto cycle in its classic and quant
We study a quantum Otto engine at finite time, where the working substance is composed of a two-level system interacting with a harmonic oscillator, described by the quantum Rabi model. We obtain the limit cycle and calculate the total work extracted, efficiency, and power of the engine by numerically solving the master equation describing the open system dynamics. We relate the total work extracted and the efficiency at maximum power with the quantum correlations embedded in the working substance, which we consider through entanglement of formation and quantum discord. Interestingly, we find that the engine can overcome the Curzon-Ahlborn efficiency when the working substance is in the ultrastrong coupling regime. This high-efficiency regime roughly coincides with the cases where the entanglement in the working substance experiences the greatest reduction in the hot isochoric stage. Our results highlight the efficiency performance of correlated working substances for quantum heat engines.
We derive the general probability distribution function of stochastic work for quantum Otto engines in which both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent power fluctuations, average power, and thermodynamic efficiency are explicitly obtained for a complete cycle operating with an analytically solvable two-level system. We show that, there is a trade-off between efficiency (or power) and power fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا