Do you want to publish a course? Click here

How Can BERT Help Lexical Semantics Tasks?

143   0   0.0 ( 0 )
 Added by Leyang Cui
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Contextualized embeddings such as BERT can serve as strong input representations to NLP tasks, outperforming their static embeddings counterparts such as skip-gram, CBOW and GloVe. However, such embeddings are dynamic, calculated according to a sentence-level context, which limits their use in lexical semantics tasks. We address this issue by making use of dynamic embeddings as word representations in training static embeddings, thereby leveraging their strong representation power for disambiguating context information. Results show that this method leads to improvements over traditional static embeddings on a range of lexical semantics tasks, obtaining the best reported results on seven datasets.



rate research

Read More

The huge size of the widely used BERT family models has led to recent efforts about model distillation. The main goal of distillation is to create a task-agnostic pre-trained model that can be fine-tuned on downstream tasks without fine-tuning its full-sized version. Despite the progress of distillation, to what degree and for what reason a task-agnostic model can be created from distillation has not been well studied. Also, the mechanisms behind transfer learning of those BERT models are not well investigated either. Therefore, this work focuses on analyzing the acceptable deduction when distillation for guiding the future distillation procedure. Specifically, we first inspect the prunability of the Transformer heads in RoBERTa and ALBERT using their head importance estimation proposed by Michel et al. (2019), and then check the coherence of the important heads between the pre-trained task and downstream tasks. Hence, the acceptable deduction of performance on the pre-trained task when distilling a model can be derived from the results, and we further compare the behavior of the pruned model before and after fine-tuning. Our studies provide guidance for future directions about BERT family model distillation.
We present an approach to combining distributional semantic representations induced from text corpora with manually constructed lexical-semantic networks. While both kinds of semantic resources are available with high lexical coverage, our aligned resource combines the domain specificity and availability of contextual information from distributional models with the conciseness and high quality of manually crafted lexical networks. We start with a distributional representation of induced senses of vocabulary terms, which are accompanied with rich context information given by related lexical items. We then automatically disambiguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses are associated with a semantic type in order to connect them to the core resource. Manual evaluations against ground-truth judgments for different stages of our method as well as an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of enriching top-down lexical knowledge resources with bottom-up distributional information from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym graphs and learning taxonomies from scratch.
Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other. To perform a systematic comparative analysis, we evaluate the mapping between meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized parser that parses to one framework using only information from the other as features. We apply these methods to convert the STREUSLE corpus (with syntactic and lexical semantic annotations) to UCCA (a graph-structured full-sentence meaning representation). Both methods yield surprisingly accurate target representations, close to fully supervised UCCA parser quality---indicating that UCCA annotations are partially redundant with STREUSLE annotations. Despite this substantial convergence between frameworks, we find several important areas of divergence.
98 - Leyang Cui , Sijie Cheng , Yu Wu 2020
BERT has been used for solving commonsense tasks such as CommonsenseQA. While prior research has found that BERT does contain commonsense information to some extent, there has been work showing that pre-trained models can rely on spurious associations (e.g., data bias) rather than key cues in solving sentiment classification and other problems. We quantitatively investigate the presence of structural commonsense cues in BERT when solving commonsense tasks, and the importance of such cues for the model prediction. Using two different measures, we find that BERT does use relevant knowledge for solving the task, and the presence of commonsense knowledge is positively correlated to the model accuracy.
Lexical semantics theories differ in advocating that the meaning of words is represented as an inference graph, a feature mapping or a vector space, thus raising the question: is it the case that one of these approaches is superior to the others in representing lexical semantics appropriately? Or in its non antagonistic counterpart: could there be a unified account of lexical semantics where these approaches seamlessly emerge as (partial) renderings of (different) aspects of a core semantic knowledge base? In this paper, we contribute to these research questions with a number of experiments that systematically probe different lexical semantics theories for their levels of cognitive plausibility and of technological usefulness. The empirical findings obtained from these experiments advance our insight on lexical semantics as the feature-based approach emerges as superior to the other ones, and arguably also move us closer to finding answers to the research questions above.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا