Do you want to publish a course? Click here

Evidence of a population of dark subhalos from Gaia and Pan-STARRS observations of the GD-1 stream

73   0   0.0 ( 0 )
 Added by Nilanjan Banik
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

New data from the $textit{Gaia}$ satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyze the stellar density perturbations in the GD-1 stream and show that they cannot be due to known baryonic structures like giant molecular clouds, globular clusters, or the Milky Ways bar or spiral arms. A joint analysis of the GD-1 and Pal 5 streams instead requires a population of dark substructures with masses $approx 10^{7}$ to $10^9 M_{rm{odot}}$. We infer a total abundance of dark subhalos normalised to standard cold dark matter $n_{rm sub}/n_{rm sub, CDM} = 0.4 ^{+0.3}_{-0.2}$ ($68 %$), which corresponds to a mass fraction contained in the subhalos $f_{rm{sub}} = 0.14 ^{+0.11}_{-0.07} %$, compatible with the predictions of hydrodynamical simulation of cold dark matter with baryons.



rate research

Read More

124 - N.R. Deacon 2014
Nova Delphini 2013 was identified on the 14th of August 2013 and eventually rose to be a naked eye object. We sought to study the behaviour of the object in the run-up to outburst and to compare it to the pre-outburst photometric characteristics of other novae. We searched the Pan-STARRS 1 datastore to identify pre-outburst photometry of Nova Del 2013 and identified twenty-four observations in the 1.2 years before outburst. The progenitor of Nova Delphini showed variability of a few tenths of a magnitude but did not brighten significantly in comparison with archival plate photometry. We also found that the object did not vary significantly on the approximately half hour timescale between pairs of Pan-STARRS 1 observations.
We have generated synthetic images of $sim$27,000 galaxies from the IllustrisTNG and the original Illustris hydrodynamic cosmological simulations, designed to match Pan-STARRS observations of $log_{10}(M_{ast}/{rm M}_{odot}) approx 9.8$-$11.3$ galaxies at $z approx 0.05$. Most of our synthetic images were created with the SKIRT radiative transfer code, including the effects of dust attenuation and scattering, and performing the radiative transfer directly on the Voronoi mesh used by the simulations themselves. We have analysed both our synthetic and real Pan-STARRS images with the newly developed $tt{statmorph}$ code, which calculates non-parametric morphological diagnostics -- including the Gini-$M_{20}$ and concentration-asymmetry-smoothness (CAS) statistics -- and performs two-dimensional Sersic fits. Overall, we find that the optical morphologies of IllustrisTNG galaxies are in good agreement with observations, and represent a substantial improvement compared to the original Illustris simulation. In particular, the locus of the Gini-$M_{20}$ diagram is consistent with that inferred from observations, while the median trends with stellar mass of all the morphological, size and shape parameters considered in this work lie within the $sim$1$sigma$ scatter of the observational trends. However, the IllustrisTNG model has some difficulty with more stringent tests, such as producing a strong morphology-colour relation. This results in a somewhat higher fraction of red discs and blue spheroids compared to observations. Similarly, the morphology-size relation is problematic: while observations show that discs tend to be larger than spheroids at a fixed stellar mass, such a trend is not present in IllustrisTNG.
90 - Cecilia Mateu 2020
RR Lyrae stars are an important and widely used tracer of the most ancient populations of our Galaxy, mainly due to their standard candle nature. The availability of large scale surveys of variable stars is allowing us to trace the structure of our entire Galaxy, even in previously inaccessible areas like the Galactic disc. In this work we aim to provide an empirical assessment of the completeness of the three largest RR Lyrae catalogues available: Gaia DR2, PanSTARRS-1 and ASAS-SN-II. Using a joint probabilistic analysis of the three surveys we compute 2D and 3D completeness maps in each surveys full magnitude range. At the bright end (G<13) we find ASAS-SN-II and Gaia are near 100% complete in RRab at high latitude (|b|>20deg); ASAS-SN-II has the best completeness at low latitude for RRab and at all latitudes for RRc. At the faint end (G>13), Gaia DR2 is the most complete catalogue for both RR Lyrae types, at any latitude, with median completeness rates of 95% (RRab) and >85% (RRc) outside the ecliptic plane (|beta|>25deg). We confirm a high and uniform completeness of PanSTARRS-1 RR Lyrae at 91% (RRab) and 82% (RRc) down to G~18, and provide the first estimate of its completeness at low galactic latitude (|b|<20deg) at an estimated median 65% (RRab) and 50-60% (RRc). Our results are publicly available as 2D and 3D completeness maps, and as functions to evaluate each surveys completeness versus distance or per line-of sight.
We present new parallax measurements from the CFHT Infrared Parallax Program and the Pan-STARRS 3$pi$ Steradian Survey for the young ($approx150-300$ Myr) triple system VHS J125601.92$-$125723.9. This system is composed of a nearly equal-flux binary (AB) and a wide, possibly planetary-mass companion (b). The systems published parallactic distance ($12.7pm1.0$ pc) implies absolute magnitudes unusually faint compared to known young objects and is in tension with the spectrophotometric distance for the central binary ($17.2pm2.6$ pc). Our CFHT and Pan-STARRS parallaxes are consistent, and the more precise CFHT result places VHS J1256-1257 at $22.2^{+1.1}_{-1.2}$ pc. Our new distance results in higher values for the companions mass ($19pm5$ M$_{rm Jup}$) and temperature ($1240pm50$ K), and also brings the absolute magnitudes of all three components into better agreement with known young objects.
A large sample of white dwarfs is selected by both proper motion and colours from the Pan-STARRS 1 3{pi} Steradian Survey Processing Version 2 to construct the White Dwarf Luminosity Functions of the discs and halo in the solar neighbourhood. Four-parameter astrometric solutions were recomputed from the epoch data. The generalised maximum volume method is then used to calculate the density of the populations. After removal of crowded areas near the Galactic plane and centre, the final sky area used by this work is 7.833 sr, which is 83% of the 3{pi} sky and 62% of the whole sky. By dividing the sky using Voronoi tessellation, photometric and astrometric uncertainties are recomputed at each step of the integration to improve the accuracy of the maximum volume. Interstellar reddening is considered throughout the work. We find a disc-to-halo white dwarf ratio of about 100.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا