Do you want to publish a course? Click here

Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r- process components

213   0   0.0 ( 0 )
 Added by Nikos Prantzos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The decomposition of the Solar system abundances of heavy isotopes into their s- and r- components plays a key role in our understanding of the corresponding nuclear processes and the physics and evolution of their astrophysical sites. We present a new method for determining the s- and r- components of the Solar system abundances, fully consistent with our current understanding of stellar nucleosynthesis and galactic chemical evolution. The method is based on a study of the evolution of the solar neighborhood with a state-of-the-art 1-zone model, using recent yields of low and intermediate mass stars as well as of massive rotating stars. We compare our results with previous studies and we provide tables with the isotopic and elemental contributions of the s- and r-processes to the Solar system composition.

rate research

Read More

We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disk. We use a consistent chemical evolution model, metallicity dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity dependent function of the rotational velocities, constrained by observations as to obtain a primary-like $^{14}$N behavior at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the solar system isotopic composition can be reproduced to better than a factor of two for isotopes up to the Fe-peak, and at the 10% level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A< 100, is not necessary. We also reproduce the evolution of the heavy to light s-elements abundance ratio ([hs/ls]) - recently observed in unevolved thin disk stars - as a result of the contribution of rotating massive stars at sub-solar metallicities. We find that those stars produce primary F and dominate its solar abundance and we confirm their role in the observed primary behavior of N. In contrast, we show that their action is insufficient to explain the small observed values of C12/C13 in halo red giants, which is rather due to internal processes in those stars.
We investigate the chemical enrichment of r-process elements in the early evolutionary stages of the Milky Way halo within the framework of hierarchical galaxy formation using a semi-analytic merger tree. In this paper, we focus on heavy r-process elements, Ba and Eu, of extremely metal-poor (EMP) stars and give constraints on their astronomical sites. Our models take into account changes of the surface abundances of EMP stars by the accretion of interstellar matter (ISM). We also consider metal-enrichment of intergalactic medium (IGM) by galactic winds and the resultant pre-enrichment of proto-galaxies. The trend and scatter of the observed r-process abundances are well reproduced by our hierarchical model with $sim 10%$ of core-collapse supernovae in low-mass end ($sim 10M_{odot}$) as a dominant r-process source and the star formation efficiency of $sim 10^{-10} hbox{yr}^{-1}$. For neutron star mergers as an r-process source, their coalescence timescale has to be $ sim 10^7$yrs, and the event rates $sim 100$ times larger than currently observed in the Galaxy. We find that the accretion of ISM is a dominant source of r-process elements for stars with [Ba/H] < -3.5. In this model, a majority of stars at [Fe/H] < -3 are formed without r-process elements but their surfaces are polluted by the ISM accretion. The pre-enrichment affects $sim 4%$ of proto-galaxies, and yet, is surpassed by the ISM accretion in the surface of EMP stars.
The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N2D+ with the luminosity of the central source and the FWHM of the line, and no correlation with the H2 column density. In combination with a previously observed set of 14 other molecules (Paper I) we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H2 states. Good overall fits to the observed data have been obtained the model. It is one of the first times that observations and modeling have been combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration.
109 - Marco Palla 2021
We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe , in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that classical W7 and WDD2 models produce Fe masses and [$alpha$/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub- Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionised abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.
We derive dynamical parameters for a large sample of 446 $r$-process-enhanced (RPE) metal-poor stars in the halo and disk systems of the Milky Way, based on data releases from the $R$-Process Alliance, supplemented by additional literature samples. This sample represents more than a ten-fold increase in size relative to that previously considered by Roederer et al., and, by design, covers a larger range of $r$-process-element enrichment levels. We test a number of clustering analysis methods on the derived orbital energies and other dynamical parameters for this sample, ultimately deciding on application of the HDBSCAN algorithm, which obtains 30 individual Chemo-Dynamically Tagged Groups (CDTGs); 21 contain between 3 and 5 stars, and 9 contain between 6 and 12 stars. Even though the clustering was performed solely on the basis of their dynamical properties, the stars in these CDTGs exhibit statistically significant similarities in their metallicity ([Fe/H]), carbonicity ([C/Fe]), and neutron-capture element ratios ([Sr/Fe], [Ba/Fe], and [Eu/Fe]). These results demonstrate that the RPE stars in these CDTGs have likely experienced common chemical-evolution histories, presumably in their parent satellite galaxies or globular clusters, prior to being disrupted into the Milky Ways halo. We also confirm the previous claim that the orbits of the RPE stars preferentially exhibit pericentric distances that are substantially lower than the present distances of surviving ultra-faint dwarf and canonical dwarf spheroidal galaxies, consistent with the disruption hypothesis. The derived dynamical parameters for several of our CDTGs indicate their association with previously known substructures, Dynamically Tagged Groups, and RPE Groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا