Do you want to publish a course? Click here

Extended main sequence turnoffs in open clusters as seen by Gaia -- II. The enigma of NGC 2509

85   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the morphology of the colour-magnitude diagram (CMD) of the open cluster NGC 2509 in comparison with other Galactic open clusters of similar age using Gaia photometry. At $sim900$ Myr Galactic open clusters in our sample all show an extended main sequence turn off (eMSTO) with the exception of NGC 2509, which presents an exceptionally narrow CMD. Our analysis of the Gaia data rules out differential extinction, stellar density, and binaries as a cause for the singular MSTO morphology in this cluster. We interpret this feature as a consequence of the stellar rotation distribution within the cluster and present the analysis with MIST stellar evolution models that include the effect of stellar rotation on which we based our conclusion. In particular, these models point to an unusually narrow range of stellar rotation rates ($Omega/Omega_{rm{crit,ZAMS}} = [0.4, 0.6]$) within the cluster as the cause of this singular feature in the CMD of NGC 2509. Interestingly, models that do not include rotation are not as good at reproducing the morphology of the observed CMD in this cluster.



rate research

Read More

We present an analysis of the relatively low mass ($sim2400$~M$_{odot}$), $sim800$~Myr, Galactic open cluster, NGC~2818, using Gaia DR2 results combined with VLT/FLAMES spectroscopy. Using Gaia DR2 proper motions and parallax measurements we are able to select a clean sample of cluster members. This cluster displays a clear extended main sequence turn-off (eMSTO), a phenomenon previously studied mainly in young and intermediate age massive clusters in the Magellanic clouds. The main sequence of NGC~2818 is extremely narrow, with a width of $sim0.01$ magnitudes (G$_{rm BP} - $ G$_{rm RP}$), suggesting very low levels of differential extinction. Using VLT/FLAMES spectroscopy of 60 cluster members to measure the rotational velocity of the stars (Vsini) we find that stars on the red side of the eMSTO have high Vsini ($>160$~km/s) while stars on the blue side have low Vsini ($<160$~km/s), in agreement with model predictions. The cluster also follows the previously discovered trend between the age of the cluster and the extent of the eMSTO. We conclude that stellar rotation is the likely cause of the eMSTO phenomenon.
We show that the extended main sequence turnoffs seen in intermediate age Large Magellanic Cloud (LMC) clusters, often attributed to age spreads of several hundred Myr, may be easily accounted for by variable stellar rotation in a coeval population. We compute synthetic photometry for grids of rotating stellar evolution models and interpolate them to produce isochrones at a variety of rotation rates and orientations. An extended main sequence turnoff naturally appears in color-magnitude diagrams at ages just under 1 Gyr, peaks in extent between ~1 and 1.5 Gyr, and gradually disappears by around 2 Gyr in age. We then fit our interpolated isochrones by eye to four LMC clusters with very extended main sequence turnoffs: NGC 1783, 1806, 1846, and 1987. In each case, stellar populations with a single age and metallicity can comfortably account for the observed extent of the turnoff region. The new stellar models predict almost no correlation of turnoff color with rotational vsini: the red edge of the turnoff is populated by a combination of slow rotators and edge-on rapid rotators.
We present photometric analysis of twelve Galactic open clusters and show that the same multiple-population phenomenon observed in Magellanic Clouds (MCs) is present in nearby open clusters. Nearly all the clusters younger than $sim$2.5 Gyr of both MCs exhibit extended main-sequence turnoffs (eMSTOs) and all the cluster younger than $sim$700 Myr show broadened/split main sequences (MSs). High-resolution spectroscopy has revealed that these clusters host stars with a large spread in the observed projected rotations. In addition to rotation, internal age variation is indicated as a possible responsible for the eMSTOs, making these systems the possible young counterparts of globular clusters with multiple populations. Recent work has shown that the eMSTO+broadened MSs are not a peculiarity of MCs clusters. Similar photometric features have been discovered in a few Galactic open clusters, challenging the idea that the color-magnitude diagrams (CMDs) of these systems are similar to single isochrones and opening new windows to explore the eMSTO phenomenon. We exploit photometry+proper motions from Gaia DR2 to investigate the CMDs of open clusters younger than $sim$1.5 Gyr. Our analysis suggests that: (i) twelve open clusters show eMSTOs and/or broadened MSs, that cannot be due neither to field contamination, nor binaries; (ii) split/broadened MSs are observed in clusters younger than $sim$700 Myr, while older objects display only an eMSTO, similarly to MCs clusters; (iii) the eMSTO, if interpreted as a pure age spread, increases with age, following the relation observed in MCs clusters and demonstrating that rotation is the responsible for this phenomenon.
160 - Paul Goudfrooij 2015
Recent high-quality photometry of many star clusters in the Magellanic Clouds with ages of 1$,-,$2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several $10^8$ yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by a SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.
88 - Paul Goudfrooij 2018
Extended main sequence turn-offs (eMSTOs) are a common feature in color-magnitude diagrams (CMDs) of young and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs is still debated. The most popular scenarios are extended star formation and ranges of stellar rotation rates. Here we study implications of a kink feature in the main sequence (MS) of young star clusters in the Large Magellanic Cloud (LMC). This kink shows up very clearly in new emph{Hubble Space Telescope} observations of the 700-Myr-old cluster NGC 1831, and is located below the region in the CMD where multiple or wide MSes, which are known to occur in young clusters and thought to be due to varying rotation rates, merge together into a single MS. The kink occurs at an initial stellar mass of $1.45 pm 0.02;M_{odot}$; we posit that it represents a lower limit to the mass below which the effects of rotation on the energy output of stars are rendered negligible at the metallicity of these clusters. Evaluating the positions of stars with this initial mass in CMDs of massive LMC star clusters with ages of $sim,$1.7 Gyr that feature wide eMSTOs, we find that such stars are located in a region where the eMSTO is already significantly wider than the MS below it. This strongly suggests that stellar rotation emph{cannot} fully explain the wide extent of eMSTOs in massive intermediate-age clusters in the Magellanic Clouds. A distribution of stellar ages still seems necessary to explain the eMSTO phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا