No Arabic abstract
Highly resonant photonic structures, such as cavities and metasurfaces, can dramatically enhance the efficiency of nonlinear processes by utilizing strong optical field enhancement at the resonance. The latter, however, comes at the expense of the bandwidth. Here, we overcome such tradeoff by utilizing time-varying resonant structures. Using harmonics generation as an example, we show that the amplitude and phase format of the excitation, as well as the time evolution of the resonator, can be optimized to yield the strongest nonlinear response. We find the conditions for an efficient synthesis of electromagnetic signals that surpass the cavity bandwidth, and discuss a potential experimental realization of this concept.
Nonlinear optical generation has been a well-established way to realize frequency conversion in nonlinear optics, whereas previous studies were just focusing on the scalar light fields. Here we report a concise yet efficient experiment to realize frequency conversion from vector fields to vector fields based on the vectorial nonlinear optical process, e.g., the second-harmonic generation. Our scheme is based on two cascading type-I phase-matching BBO crystals, whose fast axes are configured elaborately to be perpendicular to each other. Without loss of generality, we take the full Poincare beams as the vectorial light fields in our experiment, and visualize the structured features of vectorial second-harmonic fields by using Stokes polarimetry. The interesting doubling effect of polarization topological index, i.e., a low-order full Poincare beam is converted to a high-order one are demonstrated. However, polarization singularities of both C-points and L-lines are found to keep invariant during the SHG process. Our scheme can be straightforwardly generalized to other nonlinear optical effects. Our scheme can offer a deeper understanding on the interaction of vectorial light with media and may find important applications in optical imaging, optical communication and quantum information science.
Most present-day resonant systems, throughout physics and engineering, are characterized by a strict time-reversal symmetry between the rates of energy coupled in and out of the system, which leads to a trade-off between how long a wave can be stored in the system and the system bandwidth. Any attempt to reduce the losses of the resonant system, and hence store a (mechanical, acoustic, electronic, optical, atomic, or of any other nature) wave for more time, will inevitably also reduce the bandwidth of the system. Until recently, this time-bandwidth limit has been considered fundamental, arising from basic Fourier reciprocity. A recent theory suggested that it might in fact be overcome by breaking Lorentz reciprocity in the resonant system, reinvigorated a debate about whether (or not) this was indeed the case. Here, we report an experimental realization of a cavity where, inducing nonreciprocity by breaking the time invariance, we do overcome the fundamental time-bandwidth limit of ordinary resonant systems by a factor of 30, in full agreement with accompanying numerical simulations. We show that, although in practice experimental constraints limit our scheme, the time bandwidth product can be arbitrarily large, simply dictated by the finesse of the cavity. Our experimental realization uses a simple macroscopic, time-variant, fiber-optic cavity, where we break Lorentz reciprocity by non-adiabatically opening the cavity, injecting a pulse of large bandwidth, and then closing the cavity, storing the pulse which can be released on-demand at a later time. Our results open the path for designing resonant systems, ubiquitous in physics and engineering, that can simultaneously be broadband (i.e., ultrafast) and possessing long storage times, thereby unleashing fundamentally new functionalities in wave physics and wave-matter interactions.
The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave solitons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures of pump depletion and soliton-like pump dynamics. Experimental results are in excellent agreement with simulations.
We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.
We present a method, based on noncollinear second harmonic generation, to evaluate the non-zero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows to verify if Kleinman symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from Gallium Nitride layers are reported. The proposed method does not require an angular scan thus is useful when the generated signal is strongly affected by sample rotation