Selective machine learning of doubly robust functionals


Abstract in English

While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce two new selection criteria for bias reduction in estimating the functional of interest, each based on a novel definition of pseudo-risk for the functional that embodies the double robustness property and thus is used to select the pair of learners that is nearest to fulfilling this property. We establish an oracle property for a multi-fold cross-validation version of the new selection criteria which states that our empirical criteria perform nearly as well as an oracle with a priori knowledge of the pseudo-risk for each pair of candidate learners. We also describe a smooth approximation to the selection criteria which allows for valid post-selection inference. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study.

Download