The dynamics of an inviscid and incompressible fluid flow on a Riemannian manifold is governed by the Euler equations. Recently, Tao [35,36] launched a programme to address the global existence problem for the Euler and Navier Stokes equations based on the concept of universality. In this article we prove that the Euler equations exhibit universality features. More precisely, we show that any non-autonomous flow on a compact manifold can be extended to a smooth solution of the Euler equations on some Riemannian manifold of possibly higher dimension. The solutions we construct are stationary of Beltrami type, so they exist for all time. Using this result, we establish the Turing completeness of the Euler flows, i.e. that there exist solutions that encode a universal Turing machine and, in particular, these solutions have undecidable trajectories. Our proofs deepen the correspondence between contact topology and hydrodynamics, which is key to establish the universality of the Reeb flows and their Beltrami counterparts. An essential ingredient in the proofs is a novel flexibility theorem for embeddings in Reeb dynamics in terms of an $h$-principle in contact geometry, which unveils the flexible behavior of the steady Euler flows.