Do you want to publish a course? Click here

Universality of Euler flows and flexibility of Reeb embeddings

400   0   0.0 ( 0 )
 Added by Eva Miranda
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The dynamics of an inviscid and incompressible fluid flow on a Riemannian manifold is governed by the Euler equations. Recently, Tao [35,36] launched a programme to address the global existence problem for the Euler and Navier Stokes equations based on the concept of universality. In this article we prove that the Euler equations exhibit universality features. More precisely, we show that any non-autonomous flow on a compact manifold can be extended to a smooth solution of the Euler equations on some Riemannian manifold of possibly higher dimension. The solutions we construct are stationary of Beltrami type, so they exist for all time. Using this result, we establish the Turing completeness of the Euler flows, i.e. that there exist solutions that encode a universal Turing machine and, in particular, these solutions have undecidable trajectories. Our proofs deepen the correspondence between contact topology and hydrodynamics, which is key to establish the universality of the Reeb flows and their Beltrami counterparts. An essential ingredient in the proofs is a novel flexibility theorem for embeddings in Reeb dynamics in terms of an $h$-principle in contact geometry, which unveils the flexible behavior of the steady Euler flows.



rate research

Read More

We prove a non-mixing property of the flow of the 3D Euler equation which has a local nature: in any neighbourhood of a typical steady solution there is a generic set of initial conditions, such that the corresponding Euler flows will never enter a vicinity of the original steady one. More precisely, we establish that there exist stationary solutions $u_0$ of the Euler equation on $mathbb S^3$ and divergence-free vector fields $v_0$ arbitrarily close to $u_0$, whose (non-steady) evolution by the Euler flow cannot converge in the $C^k$ Holder norm ($k>10$ non-integer) to any stationary state in a small (but fixed a priori) $C^k$-neighbourhood of $u_0$. The set of such initial conditions $v_0$ is open and dense in the vicinity of $u_0$. A similar (but weaker) statement also holds for the Euler flow on $mathbb T^3$. Two essential ingredients in the proof of this result are a geometric description of all steady states near certain nondegenerate stationary solutions, and a KAM-type argument to generate knotted invariant tori from elliptic orbits.
193 - D. Kotschick , T. Vogel 2016
We study pairs of Engel structures on four-manifolds whose intersection has constant rank one and which define the same even contact structure, but induce different orientations on it. We establish a correspondence between such pairs of Engel structures and a class of weakly hyperbolic flows. This correspondence is analogous to the correspondence between bi-contact structures and projectively or conformally Anosov flows on three-manifolds found by Eliashberg--Thurston and by Mitsumatsu.
Can every physical system simulate any Turing machine? This is a classical problem which is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore asked in [15] if hydrodynamics is capable of performing computations. More recently, Tao launched a programme based on the Turing completeness of the Euler equations to address the blow up problem in the Navier-Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem [7] to quantum field theories [11]. To the best of our knowledge, the existence of undecidable particle paths of 3D fluid flows has remained an elusive open problem since Moores works in the early 1990s. In this article we construct a Turing complete stationary Euler flow on a Riemannian $S^3$ and speculate on its implications concerning Taos approach to the blow up problem in the Navier-Stokes equations.
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be interested in the existence of geodesics which are closed up to the action of some element in the group $G$, since they project to closed magnetic geodesics on the quotient orbifold $Q/G$.
This paper is devoted to searching for Riemannian metrics on 2-surfaces whose geodesic flows admit a rational in momenta first integral with a linear numerator and denominator. The explicit examples of metrics and such integrals are constructed. Few superintegrable systems are found having both a polynomial and a rational integrals which are functionally independent of the Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا