Do you want to publish a course? Click here

Neutron rich matter in the laboratory and in the heavens after GW170817

315   0   0.0 ( 0 )
 Added by Charles J. Horowitz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The historic observations of the neutron star merger GW170817 advanced our understanding of r-process nucleosynthesis and the equation of state (EOS) of neutron rich matter. Simple neutrino physics suggests that supernovae are not the site of the main r-process. Instead, the very red color of the kilonova associated with GW170817 shows that neutron star (NS) mergers are an important r-process site. We now need to measure the masses and beta decay half-lives of very neutron rich heavy nuclei so that we can more accurately predict the abundances of heavy elements that are produced. This can be done with new radioactive beam accelerators such as the Facility for Rare Isotope Beams (FRIB). GW170817 provided information on the deformability of NS and the equation of state of dense matter. The PREX II experiment will measure the neutron skin of ${}^{208}$Pb and help constrain the low density EOS. As the sensitivity of gravitational wave detectors improve, we expect to observe many more events. We look forward to exciting advances and surprises!

rate research

Read More

51 - Rana Nandi , Subrata Pal 2020
The detection of gravitational waves from GW170817 has provided a new opportunity to constrain the equation of state (EOS) of neutron stars. In this article, we investigate the possible existence of quarks inside the neutron star core in the context of GW170817. The nucleon phase is treated within the relativistic nuclear mean-field approach where we have employed a fully comprehensive set of available models, and the quark phase is described in the Bag model. We show that the nucleonic EOSs which are inconsistent with the tidal deformability bound become consistent when phase transition to quark matter via Gibbs construction is allowed. We find that several nucleonic EOSs support the presence of pure quark matter core with a small mass not more than $0.17M_odot$ confined within a radius of 0.9 km. We also find that the strong correlation between tidal deformability and neutron star radii observed for pure nucleonic stars does persist even with a nucleon-quark phase transition and provides an upper limit on the radius of $R_{1.4} lesssim 12.9$ km for a $1.4M_odot$ neutron star.
We introduce a new, powerful method to constrain properties of neutron stars (NSs). We show that the total mass of GW170817 provides a reliable constraint on the stellar radius if the merger did not result in a prompt collapse as suggested by the interpretation of associated electromagnetic emission. The radius R_1.6 of nonrotating NSs with a mass of 1.6 M_sun can be constrained to be larger than 10.68_{-0.04}^{+0.15} km, and the radius R_max of the nonrotating maximum mass configuration must be larger than 9.60_{-0.03}^{+0.14} km. We point out that detections of future events will further improve these constraints. Moreover, we show that a future event with a signature of a prompt collapse of the merger remnant will establish even stronger constraints on the NS radius from above and the maximum mass M_max of NSs from above. These constraints are particularly robust because they only require a measurement of the chirp mass and a distinction between prompt and delayed collapse of the merger remnant, which may be inferred from the electromagnetic signal or even from the presence/absence of a ringdown gravitational-wave (GW) signal. This prospect strengthens the case of our novel method of constraining NS properties, which is directly applicable to future GW events with accompanying electromagnetic counterpart observations. We emphasize that this procedure is a new way of constraining NS radii from GW detections independent of existing efforts to infer radius information from the late inspiral phase or postmerger oscillations, and it does not require particularly loud GW events.
To relate constraints from nuclear physics to the tidal deformabilities of neutron stars, we construct a neutron star model that accepts input from a large collection of Skyrme density functions to calculate properties of 1.4 solar-mass neutron stars. We find that restricting this set of Skyrme to density functions that describe nuclear masses, isobaric analog states, and low energy nuclear reactions does not sufficiently restrict the predicted neutron-star radii and the tidal deformabilities. However, pressure constraints on the EoS around twice saturation density ($2times2.74times10^{14}g/cm^3$), obtained from high energy nucleus-nucleus collisions, does constrain predicted tidal deformabilities with uncertainties smaller than those obtained from the analysis of GW170817. We also found that the density-pressure constraint on the EoS obtained from a recent analysis of the neutron-star merger event agree very well with the density pressure constraints obtained from nuclear physics experiments published in 2002.
467 - Dany Page 2010
We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel. We find that the critical temperature for this superfluid transition is ~0.5x10^9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.
The LIGO-Virgo collaboration detection of the binary neutron-star merger event, GW170817, has expanded efforts to understand the Equation of State (EoS) of nuclear matter. These measurements provide new constraints on the overall pressure, but do not elucidate its origins, by not distinguishing the contribution to the pressure from symmetry energy which governs much of the internal structure of a neutron star. By combining the neutron star EoS extracted from the GW170817 event and the EoS of symmetric matter from nucleus-nucleus collision experiments, we extract the symmetry pressure, which is the difference in pressure between neutron and nuclear matter over the density region from 1.2$rho_{0}$ to $4.5rho_{0}$. While the uncertainties in the symmetry pressure are large, they can be reduced with new experimental and astrophysical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا