Fingerprinting the effects of hyperfine structure on CH and OH far infrared spectra using Wiener filter deconvolution


Abstract in English

In this paper, we investigate the influence of hyperfine splitting on complex spectral lines, with the aim of evaluating canonical abundances by decomposing their dependence on hyperfine structures. This is achieved from first principles through deconvolution. We present high spectral resolution observations of the rotational ground state transitions of CH near 2 THz seen in absorption toward the strong FIR-continuum sources AGAL010.62$-$00.384, AGAL034.258+00.154, AGAL327.293$-$00.579, AGAL330.954$-$00.182, AGAL332.826$-$00.549, AGAL351.581$-$00.352 and SgrB2(M). These were observed with the GREAT instrument on board SOFIA. The observed line profiles of CH were deconvolved from the imprint left by the lines hyperfine structures using the Wiener filter deconvolution, an optimised kernel acting on direct deconvolution. The quantitative analysis of the deconvolved spectra first entails the computation of CH column densities. Reliable N(CH) values are of importance owing to the status of CH as a powerful tracer for H$_2$ in the diffuse regions of the interstellar medium. The N(OH)/N(CH) column density ratio is found to vary within an order of magnitude with values ranging from one to 10, for the individual sources that are located outside the Galactic centre. Using CH as a surrogate for H$_2$, we determined the abundance of the OH molecule to be X(OH)=1.09$times$10$^{-7}$ with respect to H$_2$. The radial distribution of CH column densities along the sightlines probed in this study, excluding SgrB2(M), showcase a dual peaked distribution peaking between 5 and 7 kpc. The similarity between the correspondingly derived column density profile of H$_2$ with that of the CO-dark H$_2$ gas traced by the cold neutral medium component of [CII] 158$~mu$m emission across the Galactic plane, further emphasises the use of CH as a tracer for H$_2$.

Download