Do you want to publish a course? Click here

SDSS-IV MaNGA: Bar pattern speed estimates with the Tremaine-Weinberg method and their error sources

62   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Estimating the bar pattern speed (Om{}) is one of the main challenges faced in understanding the role of stellar bars in galaxy dynamical evolution. This work aims to characterise different uncertainty sources affecting the Tremaine Weinberg (TW)-method to study the correlation between bar and galaxies physical parameters. We use a sample of 15 MaNGA SDSS-IV galaxies and 3 CALIFA galaxies from cite{Aguerri2015}. We studied the errors related with (i) galaxy centre determination, (ii) disc position angle (PA) emphasising the difficulties triggered by outer non-axisymmetric structures besides the bar, (iii) the slits length and (iv) the spatial resolution. In average, the PA uncertainties range $sim 15 %$, the slit length $sim 9 %$ and the centring error $sim 5 %$. Reducing the spatial resolution increases the sensitivity to the PA error. Through Monte Carlo simulations, we estimate the probability distribution of the R{} bar speed parameter. The present sample is composed of 7 slow, 4 fast and 7 ultrafast bars, with no trend with morphological types. Although uncertainties and low sample numbers may mask potential correlations between physical properties, we present a discussion of them: We observe an anti-correlation of Om{} with the bar length and the stellar mass, suggesting that massive galaxies tend to host longer and slower bars. We also observe a correlation of the molecular gas fraction with R{}, and a weak anti-correlation with Om{}, suggesting that bars rotate slower in gaseous discs. Confirmation of such trends awaits future studies.



rate research

Read More

We apply the Tremaine-Weinberg method to 19 nearby galaxies using stellar mass surface densities and velocities derived from the PHANGS-MUSE survey, to calculate (primarily bar) pattern speeds ($Omega_{rm P}$). After quality checks, we find that around half (10) of these stellar mass-based measurements are reliable. For those galaxies, we find good agreement between our results and previously published pattern speeds, and use rotation curves to calculate major resonance locations (co-rotation radii and Lindblad resonances). We also compare these stellar-mass derived pattern speeds with H$alpha$ (from MUSE) and CO($J=2{-}1$) emission from the PHANGS-ALMA survey. We find that in the case of these clumpy ISM tracers, this method erroneously gives a signal that is simply the angular frequency at a representative radius set by the distribution of these clumps ($Omega_{rm clump}$), and that this $Omega_{rm clump}$ is significantly different to $Omega_{rm P}$ ($sim$20% in the case of H$alpha$, and $sim$50% in the case of CO). Thus, we conclude that it is inadvisable to use pattern speeds derived from ISM kinematics. Finally, we compare our derived pattern speeds and co-rotation radii, along with bar properties, to the global parameters of these galaxies. Consistent with previous studies, we find that galaxies with a later Hubble type have a larger ratio of co-rotation radius to bar length, more molecular-gas rich galaxies have higher $Omega_{rm P}$, and more bulge-dominated galaxies have lower $Omega_{rm P}$. Unlike earlier works, however, there are no clear trends between the bar strength and $Omega_{rm P}$, nor between the total stellar mass surface density and the pattern speed.
At the intersection of galactic dynamics, evolution and global structure, issues such as the relation between bars and spirals and the persistence of spiral patterns can be addressed through the characterization of the angular speeds of the patterns and their possible radial variation. The Radial Tremaine-Weinberg (TWR) Method, a generalized version of the Tremaine-Weinberg method for observationally determining a single, constant pattern speed, allows the pattern speed to vary arbitrarily with radius. Here, we perform tests of the TWR method with regularization on several simulated galaxy data sets. The regularization is employed as a means of smoothing intrinsically noisy solutions, as well as for testing model solutions of different radial dependence (e.g. constant, linear or quadratic). We test these facilities in studies of individual simulations, and demonstrate successful measurement of both bar and spiral pattern speeds in a single disk, secondary bar pattern speeds, and spiral winding (in the first application of a TW calculation to a spiral simulation). We also explore the major sources of error in the calculation and find uncertainty in the major axis position angle most dominant. In all cases, the method is able to extract pattern speed solutions where discernible patterns exist to within 20% of the known values, suggesting that the TWR method should be a valuable tool in the area of galactic dynamics. For utility, we also discuss the caveats in, and compile a prescription for, applications to real galaxies.
When integrals in the standard Tremaine-Weinberg method are evaluated for the case of a realistic model of a doubly barred galaxy, their modifications introduced by the second rotating pattern are in accord with what can be derived from a simple extension of that method, based on separation of tracers density. This extension yields a qualitative argument that discriminates between prograde and retrograde inner bars. However, the estimate of the value of inner bars pattern speed requires further assumptions. When this extension of the Tremaine-Weinberg method is applied to the recent observation of the doubly barred galaxy NGC 2950, it indicates that the inner bar there is counter-rotating, possibly with the pattern speed of -140 +/- 50 km/s/arcsec. The occurrence of counter-rotating inner bars can constrain theories of galaxy formation.
The levels of heavy elements in stars are the product of enhancement by previous stellar generations, and the distribution of this metallicity among the population contains clues to the process by which a galaxy formed. Most famously, the G-dwarf problem highlighted the small number of low-metallicity G-dwarf stars in the Milky Way, which is inconsistent with the simplest picture of a galaxy formed from a closed box of gas. It can be resolved by treating the Galaxy as an open system that accretes gas throughout its life. This observation has classically only been made in the Milky Way, but the availability of high-quality spectral data from SDSS-IV MaNGA and the development of new analysis techniques mean that we can now make equivalent measurements for a large sample of spiral galaxies. Our analysis shows that high-mass spirals generically show a similar deficit of low-metallicity stars, implying that the Milky Ways history of gas accretion is common. By contrast, low-mass spirals show little sign of a G-dwarf problem, presenting the metallicity distribution that would be expected if such systems evolved as pretty much closed boxes. This distinction can be understood from the differing timescales for star formation in galaxies of differing masses.
We report the characterization of the first $62$ MaNGA Active Galactic Nuclei (AGN) hosts in the Fifth Product Launch (MPL-5) and the definition of a control sample of non-active galaxies. This control sample - comprising two galaxies for each AGN - was selected in order to match the AGN hosts in terms of stellar mass, redshift, visual morphology and inclination. The stellar masses are in the range $9.4<log(M/M_odot)<11.5$, and most objects have redshifts $leq 0.08$. The AGN sample is mostly comprised of low-luminosity AGN, with only 17 nuclei with $L([OIII]lambda 5007)geq 3.8times 10^{40}$ erg s$^{-1}$ (that we call strong AGN). The stellar population of the control sample galaxies within the inner $1$-$3$ kpc is dominated by the old ($sim$ $4$ - $13$ Gyr) age component, with a small contribution of intermediate age ($sim 640$-$940$ Myr) and young stars ($leq 40$ Myr) to the total light at $5700AA$. While the weaker AGN show a similar age distribution to that of the control galaxies, the strong AGN show an increased contribution of younger stars and a decreased contribution of older stars. Examining the relationship between the AGN stellar population properties and $L([OIII])$, we find that with increasing $L([OIII])$, the AGN exhibit a decreasing contribution from the oldest ($>4$ Gyr) stellar population relative to control galaxies, but have an increasing contribution from the younger components with ages $sim 40$ Myr. We also find a correlation of the mean age differences (AGN - control) with $L([OIII])$, in the sense that more luminous AGN are younger than the control objects, while the low-luminosity AGN seem to be older. These results support a connection between the growth of the galaxy bulge via formation of new stars and the growth of the Supermassive Black Hole via matter accretion in the AGN phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا