Do you want to publish a course? Click here

Measurement of $J/psi$ at forward and backward rapidity in $p$+$p$, $p$$+A$l, $p$$+A$u, and $^3$He+Au collisions at $sqrt{s_{_{NN}}}=200~{rm GeV}$

90   0   0.0 ( 0 )
 Added by Brant M. Johnson
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of $J/psi$ measurements at forward and backward rapidity in various small collision systems, $p$$+$$p$, $p$$+$Al, $p$$+$Au and $^3$He$+$Au, at $sqrt{s_{_{NN}}}$=200 GeV. The results are presented in the form of the observable $R_{AB}$, the nuclear modification factor, a measure of the ratio of the $J/psi$ invariant yield compared to the scaled yield in $p$$+$$p$ collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on $J/psi$ production with different projectile sizes $p$ and $^3$He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for $p$$+$Au and $^{3}$He$+$Au. However, for 0%--20% central collisions at backward rapidity, the modification for $^{3}$He$+$Au is found to be smaller than that for $p$$+$Au, with a mean fit to the ratio of $0.89pm0.03$(stat)${pm}0.08$(syst), possibly indicating final state effects due to the larger projectile size.



rate research

Read More

111 - C. Aidala , Y. Akiba , M. Alfred 2019
The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.
The PHENIX Collaboration has measured the ratio of the yields of $psi(2S)$ to $psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $psi(2S)$ mesons to $psi(1S)$ mesons is consistent with the value measured in pp collisions. However, in the backward (nucleus-going) direction, the $psi(2S)$ is preferentially suppressed by a factor of $sim$2. This suppression is attributed in some models to breakup of the weakly-bound $psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.
The fraction of $J/psi$ mesons which come from B-meson decay, $textrm{F}_{B{rightarrow}J/psi}$, is measured for J/$psi$ rapidity mbox{$1.2<|y|<2.2$} and $p_T>0$ in $p$+$p$ and Cu+Au collisions at $sqrt{s_{_{NN}}}$=200 GeV with the PHENIX detector. The extracted fraction is $textrm{F}_{B{rightarrow}J/psi}$ = 0.025 $pm$ 0.006(stat) $pm$ 0.010(syst) for $p$+$p$ collisions. For Cu+Au collisions, $textrm{F}_{B{rightarrow}J/psi}$ is 0.094 $pm$ 0.028(stat) $pm$ 0.037(syst) in the Au-going direction ($-2.2<y<-1.2$) and 0.089 $pm$ 0.026(stat) $pm$ 0.040(syst) in the Cu-going direction ($1.2<y<2.2$). The nuclear modification factor, $R_{rm CuAu}$, of B mesons in Cu+Au collisions is consistent with binary scaling of measured yields in $p$+$p$ at both forward and backward rapidity.
155 - STAR Collaboration 2012
We report $J/psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $pi^{pm}$ and low-$p_T$ $J/psi$.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/psi$ and cross-section ratio of $psi(2S)$ to $J/psi$ at forward rapidity in pp collisions at sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/psi$ cross sections measured at sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $dsigma^{J/psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~mbox{GeV/$c$}) =$ 54.3 $pm$ 0.5 (stat) $pm$ 5.5 (syst) nb.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا