Do you want to publish a course? Click here

Tuning Excited State Electron Transfer in Fe Tetracyano-Polypyridyl Complexes

68   0   0.0 ( 0 )
 Added by Kristjan Kunnus
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)$_4$(2,2-bipyridine)]$^{2-}$ (1), [Fe(CN)$_4$(2,3-bis(2-pyridyl)pyrazine)]$^{2-}$ (2) and [Fe(CN)$_4$(2,2-bipyrimidine)]$^{2-}$ (3) complexes in various solvents with static and time-resolved UV-visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering. We observe $^3$MLCT lifetimes from 180 fs to 67 ps over a wide range of MLCT energies in different solvents by utilizing the strong solvatochromism of the complexes. Intramolecular electron transfer lifetimes governing $^3$MLCT relaxation increase monotonically and (super)exponentially as the $^3$MLCT energy is decreased in 1 and 2 by changing the solvent. This behavior can be described with non-adiabatic classical Marcus electron transfer dynamics along the indirect $^3$MLCT->$^3$MC pathway, where the $^3$MC is the lowest energy metal-centered (MC) excited state. In contrast, the $^3$MLCT lifetime in 3 changes non-monotonically and exhibits a maximum. This qualitatively different behaviour results from direct electron transfer from the $^3$MLCT to the electronic ground state (GS). This pathway involves nuclear tunnelling for the high-frequency polypyridyl skeleton mode ($hbaromega$ = 1530 cm$^{-1}$), which is more displaced for 3 than for either 1 or 2, therefore making the direct pathway significantly more efficient in 3. To our knowledge, this is the first observation of an efficient $^3$MLCT->GS relaxation pathway in an Fe polypyridyl complex. Our study suggests that further extending the MLCT state lifetime requires (1) lowering the $^3$MLCT state energy with respect to the $^3$MC state and (2) suppressing the intramolecular distortion of the electron-accepting ligand in the $^3$MLCT excited state to suppress the rate of direct $^3$MLCT->GS electron transfer.



rate research

Read More

Excited state electron and hole transfer underpin fundamental steps in processes such as exciton dissociation at photovoltaic heterojunctions, photoinduced charge transfer at electrodes, and electron transfer in photosynthetic reaction centers. Diabatic states corresponding to charge or excitation localized species, such as locally excited and charge transfer states, provide a physically intuitive framework to simulate and understand these processes. However, obtaining accurate diabatic states and their couplings from adiabatic electronic states generally leads to inaccurate results when combined with low-tier electronic structure methods, such as time dependent density functional theory (TDDFT), and exorbitant computational cost when combined with high-level wavefunction-based methods. Here we introduce a DFT-based diabatization scheme, {Delta}-ALMO(MSDFT2), which directly constructs the diabatic states using absolutely localized molecular orbitals (ALMOs). We demonstrate that our method, which combines ALMO calculations with the {Delta}SCF technique to construct electronically excited diabatic states and obtains their couplings with charge-transfer states using our MSDFT2 scheme, gives accurate results for excited state electron and hole transfer in both charged and uncharged systems that underlie DNA repair, charge separation in donor-acceptor dyads, chromophore-to-solvent electron transfer, and singlet fission. This framework for the accurate and efficient construction of excited state diabats and evaluation of their couplings directly from DFT thus offers a route to simulate and elucidate photoinduced electron and hole transfer in large disordered systems, such as those encountered in the condensed phase.
This Perspective describes current computational efforts in the field of simulating photodynamics of transition metal complexes. We present the typical workflows and feature the strengths and limitations of the different contemporary approaches. From electronic structure methods suitable to describe transition metal complexes to approaches able to simulate their nuclear dynamics under the effect of light, we lay particular attention to build a bridge between theory and experiment by critically discussing the different models commonly adopted in the interpretation of spectroscopic experiments and the simulation of particular observables. Thereby, we review all the studies of excited state dynamics on transition metal complexes, both in gas phase and in solution from reduced to full dimensionality
171 - Andrew J. Atkins 2017
A set of density functionals coming from different rungs on Jacobs ladder are employed to evaluate the electronic excited states of three Ru(II) complexes. While most studies on the performance of density functionals compare the vertical excitation energies, in this work we focus on the energy gaps between the electronic excited states, of the same and different multiplicity. Excited state energy gaps are important for example to determine radiationless transition probabilities. Besides energies, a functional should deliver the correct state character and state ordering. Therefore, wavefunction overlaps are introduced to systematically evaluate the effect of different functionals on the character of the excited states. As a reference, the energies and state characters from multi-state second-order perturbation theory complete active space (MS-CASPT2) are used. In comparison to MS-CASPT2, it is found that while hybrid functionals provide better vertical excitation energies, pure functionals typically give more accurate excited state energy gaps. Pure functionals are also found to reproduce the state character and ordering in closer agreement to MS-CASPT2 than the hybrid functionals.
Two-photon excitation is an attractive means for controlling chemistry in both space and time. Isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are often assumed to reach the same excited state and, hence, to produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62 % increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for two-photon excitations as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.
We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of non-empirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n $rightarrow$ {pi} and {pi} $rightarrow$ {pi}* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a non-empirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا