Complex magnetic properties in the mixed 4f -5d double perovskite iridates Ln2ZnIrO6 (Ln = Nd, Sm, Eu & Gd)


Abstract in English

In this work, we report on the synthesis and magnetic properties of a series of double perovskites Ln$_2$ZnIrO$_6$ with Ln = Nd, Sm, Eu & Gd. These compounds present new examples of the rare case of double perovskites (general formula A$_2$BBO$_6$) with a magnetic 4f -ion on the A-site in combination with the strongly spin-orbit coupled 5d-transition metal ion Ir$^{4+}$ on the B-sublattice. We discuss the impact of different rare earths on the macroscopic magnetic properties. Gd$_2$ZnIrO$_6$ and Eu$_2$ZnIrO$_6$ show weak canted antiferromagnetic order below T$_N$ = 23 K and T$_N$ = 12 K, respectively. Sm$_2$ZnIrO$_6$ orders antiferromagnetically at T$_N$ = 13 K. Nd$_2$ZnIrO$_6$ exhibits complex magnetic properties with strong field dependence ranging from a two-step behavior at H = 0.01 T to an antiferromagnetic ground state at intermediate external fields and a spin-flop phase at H$geq$4 T, which suggests complex interplay between Nd$^{3+}$ and Ir$^{4+}$ . To further shed light on this magnetic interaction, the magnetic structure of Nd$_2$ZnIrO$_6$s ground state is examined via neutron powder diffraction.

Download