Do you want to publish a course? Click here

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

50   0   0.0 ( 0 )
 Added by Yuzhi Zhang Doctor
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed on-the-fly learning procedure [Phys. Rev. Materials 3, 023804] and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN.

rate research

Read More

Machine learning based interatomic potential energy surface (PES) models are revolutionizing the field of molecular modeling. However, although much faster than electronic structure schemes, these models suffer from a lower efficiency as compared to typical empirical force fields due to more sophisticated computations involved. Herein, we report a model compression scheme for boosting the performance of the Deep Potential (DP) model, a deep learning based PES model. This scheme, we call DP Compress, is an efficient post-processing step after the training of DP models (DP Train). DP Compress combines several DP-specific compression techniques, which typically speed up DP- based molecular dynamics simulations by an order of magnitude faster, and consume an order of magnitude less memory. We demonstrate that DP Compress is sufficiently accurate by testing a variety of physical properties of Cu, H2O, and Al-Cu-Mg systems. DP Compress applies to both CPU and GPU machines and is publicly available at https://github.com/deepmodeling/deepmd-kit.
We propose a hybrid scheme that interpolates smoothly the Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion potential with a newly developed deep learning potential energy model. The resulting DP-ZBL model can not only provide overall good performance on the predictions of near-equilibrium material properties but also capture the right physics when atoms are extremely close to each other, an event that frequently happens in computational simulations of irradiation damage events. We applied this scheme to the simulation of the irradiation damage processes in the face-centered-cubic aluminium system, and found better descriptions in terms of the defect formation energy, evolution of collision cascades, displacement threshold energy, and residual point defects, than the widely-adopted ZBL modified embedded atom method potentials and its variants. Our work provides a reliable and feasible scheme to accurately simulate the irradiation damage processes and opens up new opportunities to solve the predicament of lacking accurate potentials for enormous newly-discovered materials in the irradiation effect field.
Material scientists are increasingly adopting the use of machine learning (ML) for making potentially important decisions, such as, discovery, development, optimization, synthesis and characterization of materials. However, despite MLs impressive performance in commercial applications, several unique challenges exist when applying ML in materials science applications. In such a context, the contributions of this work are twofold. First, we identify common pitfalls of existing ML techniques when learning from underrepresented/imbalanced material data. Specifically, we show that with imbalanced data, standard methods for assessing quality of ML models break down and lead to misleading conclusions. Furthermore, we found that the models own confidence score cannot be trusted and model introspection methods (using simpler models) do not help as they result in loss of predictive performance (reliability-explainability trade-off). Second, to overcome these challenges, we propose a general-purpose explainable and reliable machine-learning framework. Specifically, we propose a novel pipeline that employs an ensemble of simpler models to reliably predict material properties. We also propose a transfer learning technique and show that the performance loss due to models simplicity can be overcome by exploiting correlations among different material properties. A new evaluation metric and a trust score to better quantify the confidence in the predictions are also proposed. To improve the interpretability, we add a rationale generator component to our framework which provides both model-level and decision-level explanations. Finally, we demonstrate the versatility of our technique on two applications: 1) predicting properties of crystalline compounds, and 2) identifying novel potentially stable solar cell materials.
91 - Di Qi , John Harlim 2021
We propose a Machine Learning (ML) non-Markovian closure modeling framework for accurate predictions of statistical responses of turbulent dynamical systems subjected to external forcings. One of the difficulties in this statistical closure problem is the lack of training data, which is a configuration that is not desirable in supervised learning with neural network models. In this study with the 40-dimensional Lorenz-96 model, the shortage of data (in temporal) is due to the stationarity of the statistics beyond the decorrelation time, thus, the only informative content in the training data is on short-time transient statistics. We adopted a unified closure framework on various truncation regimes, including and excluding the detailed dynamical equations for the variances. The closure frameworks employ a Long-Short-Term-Memory architecture to represent the higher-order unresolved statistical feedbacks with careful consideration to account for the intrinsic instability yet producing stable long-time predictions. We found that this unified agnostic ML approach performs well under various truncation scenarios. Numerically, the ML closure model can accurately predict the long-time statistical responses subjected to various time-dependent external forces that are not (and maximum forcing amplitudes that are relatively larger than those) in the training dataset.
Protein structure prediction has been a grand challenge for over 50 years, owing to its broad scientific and application interests. There are two primary types of modeling algorithms, template-free modeling and template-based modeling. The latter one is suitable for easy prediction tasks and is widely adopted in computer-aided drug discoveries for drug design and screening. Although it has been several decades since its first edition, the current template-based modeling approach suffers from two critical problems: 1) there are many missing regions in the template-query sequence alignment, and 2) the accuracy of the distance pairs from different regions of the template varies, and this information is not well introduced into the modeling. To solve these two problems, we propose a structural optimization process based on template modeling, introducing two neural network models to predict the distance information of the missing regions and the accuracy of the distance pairs of different regions in the template modeling structure. The predicted distances and residue pairwise-specific deviations are incorporated into the potential energy function for structural optimization, which significantly improves the qualities of the original template modeling decoys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا