No Arabic abstract
Given a simple polygon $P$ and a set $Q$ of points contained in $P$, we consider the geodesic $k$-center problem where we want to find $k$ points, called emph{centers}, in $P$ to minimize the maximum geodesic distance of any point of $Q$ to its closest center. In this paper, we focus on the case for $k=2$ and present the first exact algorithm that efficiently computes an optimal $2$-center of $Q$ with respect to the geodesic distance in $P$.
We study the geodesic Voronoi diagram of a set $S$ of $n$ linearly moving sites inside a static simple polygon $P$ with $m$ vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then develop a kinetic data structure (KDS) that maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change. For both these structures we prove that the number of such changes is at most $O(m^3)$, and that this is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient kinetic data structures for both structures. Our data structures use linear space and process a worst-case optimal number of events. Our bisector KDS handles each event in $O(log m)$ time, and our Voronoi center handles each event in $O(log^2 m)$ time. Both structures can be extended to efficiently support updating the movement of the sites as well. Using these data structures as building blocks we obtain a compact KDS for maintaining the full geodesic Voronoi diagram.
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an $O(nloglog n+mlog m)$- time algorithm to compute the geodesic farthest-point Voronoi diagram of $m$ point sites in a simple $n$-gon. This improves the previously best known algorithm by Aronov et al. [Discrete Comput. Geom. 9(3):217-255, 1993]. In the case that all point sites are on the boundary of the simple polygon, we can compute the geodesic farthest-point Voronoi diagram in $O((n + m) log log n)$ time.
For a polygonal domain with $h$ holes and a total of $n$ vertices, we present algorithms that compute the $L_1$ geodesic diameter in $O(n^2+h^4)$ time and the $L_1$ geodesic center in $O((n^4+n^2 h^4)alpha(n))$ time, respectively, where $alpha(cdot)$ denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in $O(n^{7.73})$ or $O(n^7(h+log n))$ time, and compute the geodesic center in $O(n^{11}log n)$ time. Therefore, our algorithms are significantly faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on $L_1$ shortest paths in polygonal domains.
Deciding whether a family of disjoint line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.
Throughout this paper, a persistence diagram ${cal P}$ is composed of a set $P$ of planar points (each corresponding to a topological feature) above the line $Y=X$, as well as the line $Y=X$ itself, i.e., ${cal P}=Pcup{(x,y)|y=x}$. Given a set of persistence diagrams ${cal P}_1,...,{cal P}_m$, for the data reduction purpose, one way to summarize their topological features is to compute the {em center} ${cal C}$ of them first under the bottleneck distance. We consider two discre