Searching for z > 6.5 Analogs Near the Peak of Cosmic Star Formation


Abstract in English

Strong [OIII]$lambdalambda$4959,5007+H$beta$ emission appears to be typical in star-forming galaxies at z > 6.5. As likely contributors to cosmic reionization, these galaxies and the physical conditions within them are of great interest. At z > 6.5, where Ly$alpha$ is greatly attenuated by the intergalactic medium, rest-UV metal emission lines provide an alternative measure of redshift and also constraints on the physical properties of star-forming regions and massive stars. We present the first statistical sample of rest-UV line measurements in z $sim$ 2 galaxies selected as analogs of those in the reionization era based on [OIII]$lambdalambda$4959,5007 EW or rest-frame U-B color. Our sample is drawn from the 3D-HST Survey and spans the redshift range 1.36 $leqslant$ z $leqslant$ 2.49. We find that the median Ly$alpha$ and CIII]$lambdalambda$1907,1909 EWs of our sample are significantly greater than those of z $sim$ 2 UV-continuum-selected star-forming galaxies. Measurements from both individual and composite spectra indicate a monotonic, positive correlation between CIII] and [OIII], while a lack of trend is observed between Ly$alpha$ and [OIII] at [OIII] EW < 1000$unicode{x212B}$. At higher [OIII] EW, extreme Ly$alpha$ emission starts to emerge. Using stacked spectra, we find that Ly$alpha$ and CIII] are significantly enhanced in galaxies with lower metallicity. Two objects in our sample appear comparable to z > 6.5 galaxies with exceptionally strong rest-UV metal line emission. These objects have significant CIV$lambdalambda$1548,1550, HeII$lambda$1640, and OIII]$lambdalambda$1661,1665 emission in addition to intense Ly$alpha$ or CIII]. Detailed characterization of these lower-redshift analogs provides unique insights into the physical conditions in z > 6.5 star-forming regions, motivating future observations of reionization-era analogs at lower redshifts.

Download