Do you want to publish a course? Click here

On sample complexity of neural networks

74   0   0.0 ( 0 )
 Added by Alexander Usvyatsov
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider functions defined by deep neural networks as definable objects in an o-miminal expansion of the real field, and derive an almost linear (in the number of weights) bound on sample complexity of such networks.



rate research

Read More

96 - Zetong Qi , T.J. Wilder 2019
Adversarial attacks during the testing phase of neural networks pose a challenge for the deployment of neural networks in security critical settings. These attacks can be performed by adding noise that is imperceptible to humans on top of the original data. By doing so, an attacker can create an adversarial sample, which will cause neural networks to misclassify. In this paper, we seek to understand the theoretical limits of what can be learned by neural networks in the presence of an adversary. We first defined the hypothesis space of a neural network, and showed the relationship between the growth number of the entire neural network and the growth number of each neuron. Combine that with the adversarial Vapnik-Chervonenkis(VC)-dimension of halfspace classifiers, we concluded the adversarial VC-dimension of the neural networks with sign activation functions.
The goal of predictive sparse coding is to learn a representation of examples as sparse linear combinations of elements from a dictionary, such that a learned hypothesis linear in the new representation performs well on a predictive task. Predictive sparse coding algorithms recently have demonstrated impressive performance on a variety of supervised tasks, but their generalization properties have not been studied. We establish the first generalization error bounds for predictive sparse coding, covering two settings: 1) the overcomplete setting, where the number of features k exceeds the original dimensionality d; and 2) the high or infinite-dimensional setting, where only dimension-free bounds are useful. Both learning bounds intimately depend on stability properties of the learned sparse encoder, as measured on the training sample. Consequently, we first present a fundamental stability result for the LASSO, a result characterizing the stability of the sparse codes with respect to perturbations to the dictionary. In the overcomplete setting, we present an estimation error bound that decays as tilde{O}(sqrt(d k/m)) with respect to d and k. In the high or infinite-dimensional setting, we show a dimension-free bound that is tilde{O}(sqrt(k^2 s / m)) with respect to k and s, where s is an upper bound on the number of non-zeros in the sparse code for any training data point.
The stunning empirical successes of neural networks currently lack rigorous theoretical explanation. What form would such an explanation take, in the face of existing complexity-theoretic lower bounds? A first step might be to show that data generated by neural networks with a single hidden layer, smooth activation functions and benign input distributions can be learned efficiently. We demonstrate here a comprehensive lower bound ruling out this possibility: for a wide class of activation functions (including all currently used), and inputs drawn from any logconcave distribution, there is a family of one-hidden-layer functions whose output is a sum gate, that are hard to learn in a precise sense: any statistical query algorithm (which includes all known variants of stochastic gradient descent with any loss function) needs an exponential number of queries even using tolerance inversely proportional to the input dimensionality. Moreover, this hard family of functions is realizable with a small (sublinear in dimension) number of activation units in the single hidden layer. The lower bound is also robust to small perturbations of the true weights. Systematic experiments illustrate a phase transition in the training error as predicted by the analysis.
Modern neural networks often contain significantly more parameters than the size of their training data. We show that this excess capacity provides an opportunity for embedding secret machine learning models within a trained neural network. Our novel framework hides the existence of a secret neural network with arbitrary desired functionality within a carrier network. We prove theoretically that the secret networks detection is computationally infeasible and demonstrate empirically that the carrier network does not compromise the secret networks disguise. Our paper introduces a previously unknown steganographic technique that can be exploited by adversaries if left unchecked.
While various complexity measures for deep neural networks exist, specifying an appropriate measure capable of predicting and explaining generalization in deep networks has proven challenging. We propose Neural Complexity (NC), a meta-learning framework for predicting generalization. Our model learns a scalar complexity measure through interactions with many heterogeneous tasks in a data-driven way. The trained NC model can be added to the standard training loss to regularize any task learner in a standard supervised learning scenario. We contrast NCs approach against existing manually-designed complexity measures and other meta-learning models, and we validate NCs performance on multiple regression and classification tasks

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا