Do you want to publish a course? Click here

Principal Component Analysis: A Generalized Gini Approach

176   0   0.0 ( 0 )
 Added by Arthur Charpentier
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A principal component analysis based on the generalized Gini correlation index is proposed (Gini PCA). The Gini PCA generalizes the standard PCA based on the variance. It is shown, in the Gaussian case, that the standard PCA is equivalent to the Gini PCA. It is also proven that the dimensionality reduction based on the generalized Gini correlation matrix, that relies on city-block distances, is robust to outliers. Monte Carlo simulations and an application on cars data (with outliers) show the robustness of the Gini PCA and provide different interpretations of the results compared with the variance PCA.



rate research

Read More

154 - Haozhe Zhang , Yehua Li 2020
We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independent functional nugget effect. Observations on each function are made on discrete time points and contaminated with measurement errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor product spline estimator for the spatio-temporal covariance function. When a coregionalization covariance structure is further assumed, we propose a new functional principal component analysis method that borrows information from neighboring functions. The proposed method also generates nonparametric estimators for the spatial covariance functions, which can be used for functional kriging. Under a unified framework for sparse and dense functional data, infill and increasing domain asymptotic paradigms, we develop the asymptotic convergence rates for the proposed estimators. Advantages of the proposed approach are demonstrated through simulation studies and two real data applications representing sparse and dense functional data, respectively.
141 - Yixuan Qiu , Jing Lei , 2019
Sparse principal component analysis (PCA) is an important technique for dimensionality reduction of high-dimensional data. However, most existing sparse PCA algorithms are based on non-convex optimization, which provide little guarantee on the global convergence. Sparse PCA algorithms based on a convex formulation, for example the Fantope projection and selection (FPS), overcome this difficulty, but are computationally expensive. In this work we study sparse PCA based on the convex FPS formulation, and propose a new algorithm that is computationally efficient and applicable to large and high-dimensional data sets. Nonasymptotic and explicit bounds are derived for both the optimization error and the statistical accuracy, which can be used for testing and inference problems. We also extend our algorithm to online learning problems, where data are obtained in a streaming fashion. The proposed algorithm is applied to high-dimensional gene expression data for the detection of functional gene groups.
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlying structures. One of the equivalent definitions of PCA is that it seeks the subspaces that maximize the sum of squared pairwise distances between data projections. This definition opens up more flexibility in the analysis of principal components which is useful in enhancing PCA. In this paper we introduce scales into PCA by maximizing only the sum of pairwise distances between projections for pairs of datapoints with distances within a chosen interval of values [l,u]. The resulting principal component decompositions in Multiscale PCA depend on point (l,u) on the plane and for each point we define projectors onto principal components. Cluster analysis of these projectors reveals the structures in the data at various scales. Each structure is described by the eigenvectors at the medoid point of the cluster which represent the structure. We also use the distortion of projections as a criterion for choosing an appropriate scale especially for data with outliers. This method was tested on both artificial distribution of data and real data. For data with multiscale structures, the method was able to reveal the different structures of the data and also to reduce the effect of outliers in the principal component analysis.
136 - Tomokazu Konishi 2012
Motivation: Although principal component analysis is frequently applied to reduce the dimensionality of matrix data, the method is sensitive to noise and bias and has difficulty with comparability and interpretation. These issues are addressed by improving the fidelity to the study design. Principal axes and the components for variables are found through the arrangement of the training data set, and the centers of data are found according to the design. By using both the axes and the center, components for an observation that belong to various studies can be separately estimated. Both of the components for variables and observations are scaled to a unit length, which enables relationships to be seen between them. Results: Analyses in transcriptome studies showed an improvement in the separation of experimental groups and in robustness to bias and noise. Unknown samples were appropriately classified on predetermined axes. These axes well reflected the study design, and this facilitated the interpretation. Together, the introduced concepts resulted in improved generality and objectivity in the analytical results, with the ability to locate hidden structures in the data.
We consider the problem of decomposing a large covariance matrix into the sum of a low-rank matrix and a diagonally dominant matrix, and we call this problem the Diagonally-Dominant Principal Component Analysis (DD-PCA). DD-PCA is an effective tool for designing statistical methods for strongly correlated data. We showcase the use of DD-PCA in two statistical problems: covariance matrix estimation, and global detection in multiple testing. Using the output of DD-PCA, we propose a new estimator for estimating a large covariance matrix with factor structure. Thanks to a nice property of diagonally dominant matrices, this estimator enjoys the advantage of simultaneous good estimation of the covariance matrix and the precision matrix (by a plain inversion). A plug-in of this estimator to linear discriminant analysis and portfolio optimization yields appealing performance in real data. We also propose two new tests for testing the global null hypothesis in multiple testing when the $z$-scores have a factor covariance structure. Both tests first use DD-PCA to adjust the individual $p$-values and then plug in the adjusted $p$-values to the Higher Criticism (HC) test. These new tests significantly improve over the HC test and compare favorably with other existing tests. For computation of DD-PCA, we propose an iterative projection algorithm and an ADMM algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا