Semantic segmentation is a crucial task for robot navigation and safety. However, it requires huge amounts of pixelwise annotations to yield accurate results. While recent progress in computer vision algorithms has been heavily boosted by large ground-level datasets, the labeling time has hampered progress in low altitude UAV applications, mostly due to the difficulty imposed by large object scales and pose variations. Motivated by the lack of a large video aerial dataset, we introduce a new one, with high resolution (4K) images and manually-annotated dense labels every 50 frames. To help the video labeling process, we make an important step towards automatic annotation and propose SegProp, an iterative flow-based method with geometric constrains to propagate the semantic labels to frames that lack human annotations. This results in a dataset with more than 50k annotated frames - the largest of its kind, to the best of our knowledge. Our experiments show that SegProp surpasses current state-of-the-art label propagation methods by a significant margin. Furthermore, when training a semantic segmentation deep neural net using the automatically annotated frames, we obtain a compelling overall performance boost at test time of 16.8% mean F-measure over a baseline trained only with manually-labeled frames. Our Ruralscapes dataset, the label propagation code and a fast segmentation tool are available at our website: https://sites.google.com/site/aerialimageunderstanding/