Do you want to publish a course? Click here

Vertical position of the Sun with $gamma$-rays

64   0   0.0 ( 0 )
 Added by Thomas Siegert
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We illustrate a method for estimating the vertical position of the Sun above the Galactic plane by $gamma$-ray observations. Photons of $gamma$-ray wavelengths are particularly well suited for geometrical and kinematic studies of the Milky Way because they are not subject to extinction by interstellar gas or dust. Here, we use the radioactive decay line of $mathrm{^{26}Al}$ at $1.809,mathrm{MeV}$ to perform maximum likelihood fits to data from the spectrometer SPI on board the INTEGRAL satellite as a proof-of-concept study. Our simple analytic 3D emissivity models are line-of-sight integrated, and varied as a function of the Suns vertical position, given a known distance to the Galactic centre. We find a vertical position of the Sun of $z_0 = 15 pm 17,mathrm{pc}$ above the Galactic plane, consistent with previous studies, finding $z_0$ in a range between $5$ and $29,mathrm{pc}$. Even though the sensitivity of current MeV instruments is several orders of magnitude below that of telescopes for other wavelengths, this result reveals once more the disregarded capability of soft $gamma$-ray telescopes. We further investigate possible biases in estimating the vertical extent of $gamma$-ray emission if the Suns position is set incorrectly, and find that the larger the true extent, the less is it affected by the observer position. In the case of $mathrm{^{26}Al}$ with an exponential scale height of $150,mathrm{pc}$ ($700,mathrm{pc}$) in the inner (full) Galaxy, this may lead to misestimates of up to $25,%$.



rate research

Read More

268 - L. Guillemot , T. M. Tauris 2014
Millisecond pulsars (MSPs) and normal non-recycled pulsars are both detected in $gamma$-rays. However, it appears that a much larger fraction of known energetic and nearby MSPs are detected in $gamma$-rays, in comparison with normal pulsars, thereby making undetected $gamma$-ray MSPs exceptions. In this paper, we demonstrate that the viewing angles (i.e. between the pulsar spin axis and the line of sight) are well described by the orbital inclination angles which, for binary MSPs with helium white dwarf companions, can be determined using the relationship between the orbital period and the white dwarf mass. We use the predicted viewing angles, in complement with values obtained from other constraints when available, to identify the causes of non-detection of energetic and nearby MSPs from the point of view of beaming geometry and orientation. We find evidence for slightly different viewing angle distributions, and postulate that energetic and nearby MSPs are mainly undetected in $gamma$-rays simply because they are seen under unfavourable (i.e. small) viewing angles. We finally discuss the magnetic fields of $gamma$-ray detected pulsars and show that pulsars which are efficient at converting their rotational energy into $gamma$-ray emission may have overestimated dipolar magnetic field strengths.
The complex interplay of processes at the Galactic Center is at the heart of numerous past, present, and (likely) future mysteries. We aim at a more complete understanding of how spectra extending to >10 TeV result. We first construct a simplified model to account for the peculiar energy and angular dependence of the intense central parsec photon field. This allows for calculating anisotropic inverse Compton scattering and mapping gamma-ray extinction due to gamma gamma -> e^+ e^- attenuation. Coupling these with a method for evolving electron spectra, we examine several clear and present excesses, including the diffuse hard X-rays seen by NuSTAR and GeV gamma rays by Fermi. We address further applications to cosmic rays, dark matter, neutrinos, and gamma rays from the Center and beyond.
143 - Luigi Tibaldo IRAP 2021
Continuum gamma-ray emission produced by interactions of cosmic rays with interstellar matter and radiation fields is a probe of non-thermal particle populations in galaxies. After decades of continuous improvements in experimental techniques and an ever-increasing sky and energy coverage, gamma-ray observations reveal in unprecedented detail the properties of galactic cosmic rays. A variety of scales and environments are now accessible to us, from the local interstellar medium near the Sun and the vicinity of cosmic-ray accelerators, out to the Milky Way at large and beyond, with a growing number of gamma-ray emitting star-forming galaxies. Gamma-ray observations have been pushing forward our understanding of the life cycle of cosmic rays in galaxies and, combined with advances in related domains, they have been challenging standard assumptions in the field and have spurred new developments in modelling approaches and data analysis methods. We provide a review of the status of the subject and discuss perspectives on future progress.
141 - Roland Diehl , Mark Leising 2009
SPI on INTEGRAL has provided spectra and a map of the sky in the emission from annihilations of positrons in the interstellar medium of our Galaxy. From high-resolution spectra we learned that a warm, partially-ionized medium is the site where the observed gamma-rays originate. The gamma-ray emission map shows a major puzzle for broader astrophysics topics, as it is dominated by a bright and extended apparently spherical emission region centered in the Galaxys center. Only recently has the disk of the Galaxy been detected with SPI. This may be regarded as confirmation of earlier expectations that positrons should arise predominantly from sources of nucleosynthesis distributed throughout the plane of the Galaxy, which produce proton-rich unstable isotopes. But there are other plausible sources of positrons, among them pulsars and accreting binaries such as microquasars. SPI results may be interpreted also as hints that these are more significant as positron sources on the Galactic scale than thought before, in the plane and therefore also in the bulge of the Galaxy. This is part of the attempt to understand the surprisingly-bright emission from the central region in the Galaxy, which otherwise also could be interpreted as a first rather direct detection of dark matter annihilations in the Galaxys gravitational well. INTEGRAL has a unique potential to shed light on the various aspects of positron astrophysics, through its capability for imaging spectroscopy.
We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ~0.1-1 EeV and possibly beyond, with a hard spectral index Gamma ~ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ~ 10 % of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by CTA. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ~ 20-60 % of the isotropic background detected by IceCube.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا