Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables


Abstract in English

Field-orthogonal temporal mode analysis of optical fields is recently developed for a new framework of quantum information science. But so far, the exact profiles of the temporal modes are not known, which makes it difficult to achieve mode selection and de-multiplexing. Here, we report a novel method that measures directly the exact form of the temporal modes. This in turn enables us to make mode-orthogonal homodyne detection with mode-matched local oscillators. We apply the method to a pulse-pumped, specially engineered fiber parametric amplifier and demonstrate temporally multiplexed multi-dimensional quantum entanglement of continuous variables in telecom wavelength. The temporal mode characterization technique can be generalized to other pulse-excited systems to find their eigen modes for multiplexing in temporal domain.

Download