Auto-regulatory feedback loops are one of the most common network motifs. A wide variety of stochastic models have been constructed to understand how the fluctuations in protein numbers in these loops are influenced by the kinetic parameters of the main biochemical steps. These models differ according to (i) which sub-cellular processes are explicitly modelled; (ii) the modelling methodology employed (discrete, continuous or hybrid); (iii) whether they can be analytically solved for the steady-state distribution of protein numbers. We discuss the assumptions and properties of the main models in the literature, summarize our current understanding of the relationship between them and highlight some of the insights gained through modelling.
Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution (Hornos et al, Phys. Rev. E {bf 72}, 051907 (2005) and subsequent studies). We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.
Bacteria live in environments that are continuously fluctuating and changing. Exploiting any predictability of such fluctuations can lead to an increased fitness. On longer timescales bacteria can learn the structure of these fluctuations through evolution. However, on shorter timescales, inferring the statistics of the environment and acting upon this information would need to be accomplished by physiological mechanisms. Here, we use a model of metabolism to show that a simple generalization of a common regulatory motif (end-product inhibition) is sufficient both for learning continuous-valued features of the statistical structure of the environment and for translating this information into predictive behavior; moreover, it accomplishes these tasks near-optimally. We discuss plausible genetic circuits that could instantiate the mechanism we describe, including one similar to the architecture of two-component signaling, and argue that the key ingredients required for such predictive behavior are readily accessible to bacteria.
Transcription regulation typically involves the binding of proteins over long distances on multiple DNA sites that are brought close to each other by the formation of DNA loops. The inherent complexity of the assembly of regulatory complexes on looped DNA challenges the understanding of even the simplest genetic systems, including the prototypical lac operon. Here we implement a scalable quantitative computational approach to analyze systems regulated through multiple DNA sites with looping. Our approach applied to the lac operon accurately predicts the transcription rate over five orders of magnitude for wild type and seven mutants accounting for all the combinations of deletions of the three operators. A quantitative analysis of the model reveals that the presence of three operators provides a mechanism to combine robust repression with sensitive induction, two seemingly mutually exclusive properties that are required for optimal functioning of metabolic switches.
Network of packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system is compiled and used as analogy of a gene regulatory network. Using a trace-back algorithm we assembly networks from the potential pool of packages for both scale-free and exponential topology from real and a null model data, respectively. We calculate the maximum number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory networks allow a larger active network size than random ones. Small genomes with scale-free regulatory topology could allow much more functionality than large genomes with an exponential one, with implications on its dynamics, robustness and evolution.
Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging. MtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of the resulting mitochondrial networks in the time evolution of the cellular proportion of mutated mtDNA molecules (heteroplasmy), and cell-to-cell variability in heteroplasmy (heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly important since it modulates the number of pathological cells in a tissue. Here, we provide the first wide-reaching theoretical framework which bridges mitochondrial network and genetic states. We show that, under a range of conditions, the (genetic) rate of increase in heteroplasmy variance and de novo mutation are proportionally modulated by the (physical) fraction of unfused mitochondria, independently of the absolute fission-fusion rate. In the context of selective fusion, we show that intermediate fusion/fission ratios are optimal for the clearance of mtDNA mutants. Our findings imply that modulating network state, mitophagy rate and copy number to slow down heteroplasmy dynamics when mean heteroplasmy is low could have therapeutic advantages for mitochondrial disease and healthy aging.
James Holehouse
,Zhixing Cao
,Ramon Grima
.
(2019)
.
"Stochastic modeling of auto-regulatory genetic feedback loops: a review and comparative study"
.
Ramon Grima
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا