Do you want to publish a course? Click here

KRNET: Image Denoising with Kernel Regulation Network

265   0   0.0 ( 0 )
 Added by Peng Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

One popular strategy for image denoising is to design a generalized regularization term that is capable of exploring the implicit prior underlying data observation. Convolutional neural networks (CNN) have shown the powerful capability to learn image prior information through a stack of layers defined by a combination of kernels (filters) on the input. However, existing CNN-based methods mainly focus on synthetic gray-scale images. These methods still exhibit low performance when tackling multi-channel color image denoising. In this paper, we optimize CNN regularization capability by developing a kernel regulation module. In particular, we propose a kernel regulation network-block, referred to as KR-block, by integrating the merits of both large and small kernels, that can effectively estimate features in solving image denoising. We build a deep CNN-based denoiser, referred to as KRNET, via concatenating multiple KR-blocks. We evaluate KRNET on additive white Gaussian noise (AWGN), multi-channel (MC) noise, and realistic noise, where KRNET obtains significant performance gains over state-of-the-art methods across a wide spectrum of noise levels.



rate research

Read More

99 - Meng Chang , Qi Li , Huajun Feng 2020
Previous works have shown that convolutional neural networks can achieve good performance in image denoising tasks. However, limited by the local rigid convolutional operation, these methods lead to oversmoothing artifacts. A deeper network structure could alleviate these problems, but more computational overhead is needed. In this paper, we propose a novel spatial-adaptive denoising network (SADNet) for efficient single image blind noise removal. To adapt to changes in spatial textures and edges, we design a residual spatial-adaptive block. Deformable convolution is introduced to sample the spatially correlated features for weighting. An encoder-decoder structure with a context block is introduced to capture multiscale information. With noise removal from the coarse to fine, a high-quality noisefree image can be obtained. We apply our method to both synthetic and real noisy image datasets. The experimental results demonstrate that our method can surpass the state-of-the-art denoising methods both quantitatively and visually.
83 - Lu Xu , Yuwei Zhang , Ying Liu 2021
Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT image equally and can be inefficient when fine-grained structures coexist with non-uniformly distributed noises. To address this issue, we propose a Structure-preserving Kernel Prediction Network (StructKPN) that combines the kernel prediction network with a structure-aware loss function that utilizes the pixel gradient statistics and guides the model towards spatially-variant filters that enhance noise removal, prevent over-smoothing and preserve detailed structures for different regions in CT imaging. Extensive experiments demonstrated that our approach achieved superior performance on both synthetic and non-synthetic datasets, and better preserves structures that are highly desired in clinical screening and low-dose protocol optimization.
We propose an efficient neural network for RAW image denoising. Although neural network-based denoising has been extensively studied for image restoration, little attention has been given to efficient denoising for compute limited and power sensitive devices, such as smartphones and smartwatches. In this paper, we present a novel architecture and a suite of training techniques for high quality denoising in mobile devices. Our work is distinguished by three main contributions. (1) Feature-Align layer that modulates the activations of an encoder-decoder architecture with the input noisy images. The auto modulation layer enforces attention to spatially varying noise that tend to be washed away by successive application of convolutions and non-linearity. (2) A novel Feature Matching Loss that allows knowledge distillation from large denoising networks in the form of a perceptual content loss. (3) Empirical analysis of our efficient model trained to specialize on different noise subranges. This opens additional avenue for model size reduction by sacrificing memory for compute. Extensive experimental validation shows that our efficient model produces high quality denoising results that compete with state-of-the-art large networks, while using significantly fewer parameters and MACs. On the Darmstadt Noise Dataset benchmark, we achieve a PSNR of 48.28dB, while using 263 times fewer MACs, and 17.6 times fewer parameters than the state-of-the-art network, which achieves 49.12dB.
122 - Qian Ning , Weisheng Dong , Xin Li 2021
Neural architecture search (NAS) has recently reshaped our understanding on various vision tasks. Similar to the success of NAS in high-level vision tasks, it is possible to find a memory and computationally efficient solution via NAS with highly competent denoising performance. However, the optimization gap between the super-network and the sub-architectures has remained an open issue in both low-level and high-level vision. In this paper, we present a novel approach to filling in this gap by connecting model-guided design with NAS (MoD-NAS) and demonstrate its application into image denoising. Specifically, we propose to construct a new search space under model-guided framework and develop more stable and efficient differential search strategies. MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer as well as network width and depth via gradient descent. During the search process, the proposed MoG-NAS is capable of avoiding mode collapse due to the smoother search space designed under the model-guided framework. Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods with fewer parameters, lower number of flops, and less amount of testing time.
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous network formation with the unique use of linear convolution. In this study, we propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation. To this end, we propose the idea of an operational neuron or Operational Neural Networks (ONN), which enables a flexible non-linear and heterogeneous configuration employing both inter and intra-layer neuronal diversity. Furthermore, we propose a robust operator search strategy inspired by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which can make data-driven choices for non-linearities in any architecture. An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا