Do you want to publish a course? Click here

Fast Portrait Segmentation with Highly Light-weight Network

123   0   0.0 ( 0 )
 Added by Yuezun Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we describe a fast and light-weight portrait segmentation method based on a new highly light-weight backbone (HLB) architecture. The core element of HLB is a bottleneck-based factorized block (BFB) that has much fewer parameters than existing alternatives while keeping good learning capacity. Consequently, the HLB-based portrait segmentation method can run faster than the existing methods yet retaining the competitive accuracy performance with state-of-the-arts. Experiments conducted on two benchmark datasets demonstrate the effectiveness and efficiency of our method.



rate research

Read More

Compared to the general semantic segmentation problem, portrait segmentation has higher precision requirement on boundary area. However, this problem has not been well studied in previous works. In this paper, we propose a boundary-sensitive deep neural network (BSN) for portrait segmentation. BSN introduces three novel techniques. First, an individual boundary-sensitive kernel is proposed by dilating the contour line and assigning the boundary pixels with multi-class labels. Second, a global boundary-sensitive kernel is employed as a position sensitive prior to further constrain the overall shape of the segmentation map. Third, we train a boundary-sensitive attribute classifier jointly with the segmentation network to reinforce the network with semantic boundary shape information. We have evaluated BSN on the current largest public portrait segmentation dataset, i.e, the PFCN dataset, as well as the portrait images collected from other three popular image segmentation datasets: COCO, COCO-Stuff, and PASCAL VOC. Our method achieves the superior quantitative and qualitative performance over state-of-the-arts on all the datasets, especially on the boundary area.
141 - Tianyi Wu , Sheng Tang , Rui Zhang 2018
The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network and is specially tailored for increasing segmentation accuracy. CGNet is also elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters. The source code for the complete system can be found at https://github.com/wutianyiRosun/CGNet.
The ability to capture good quality images in the dark and near-zero lux conditions has been a long-standing pursuit of the computer vision community. The seminal work by Chen et al. [5] has especially caused renewed interest in this area, resulting in methods that build on top of their work in a bid to improve the reconstruction. However, for practical utility and deployment of low-light enhancement algorithms on edge devices such as embedded systems, surveillance cameras, autonomous robots and smartphones, the solution must respect additional constraints such as limited GPU memory and processing power. With this in mind, we propose a deep neural network architecture that aims to strike a balance between the network latency, memory utilization, model parameters, and reconstruction quality. The key idea is to forbid computations in the High-Resolution (HR) space and limit them to a Low-Resolution (LR) space. However, doing the bulk of computations in the LR space causes artifacts in the restored image. We thus propose Pack and UnPack operations, which allow us to effectively transit between the HR and LR spaces without incurring much artifacts in the restored image. We show that we can enhance a full resolution, 2848 x 4256, extremely dark single-image in the ballpark of 3 seconds even on a CPU. We achieve this with 2 - 7x fewer model parameters, 2 - 3x lower memory utilization, 5 - 20x speed up and yet maintain a competitive image reconstruction quality compared to the state-of-the-art algorithms.
Digital face manipulation has become a popular and fascinating way to touch images with the prevalence of smartphones and social networks. With a wide variety of user preferences, facial expressions, and accessories, a general and flexible model is necessary to accommodate different types of facial editing. In this paper, we propose a model to achieve this goal based on an end-to-end convolutional neural network that supports fast inference, edit-effect control, and quick partial-model update. In addition, this model learns from unpaired image sets with different attributes. Experimental results show that our framework can handle a wide range of expressions, accessories, and makeup effects. It produces high-resolution and high-quality results in fast speed.
Significant progress has been made in Video Object Segmentation (VOS), the video object tracking task in its finest level. While the VOS task can be naturally decoupled into image semantic segmentation and video object tracking, significantly much more research effort has been made in segmentation than tracking. In this paper, we introduce tracking-by-detection into VOS which can coherently integrate segmentation into tracking, by proposing a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance. Notably, our method is entirely online and thus suitable for one-shot learning, and our end-to-end trainable model allows multiple object segmentation in one forward pass. We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا