Junction conditions in scalar-tensor theories


Abstract in English

We analyze junction conditions at a null or non-null hypersurface $Sigma$ in a large class of scalar-tensor theories in arbitrary $n(ge 3)$ dimensions. After showing that the metric and a scalar field must be continuous at $Sigma$ as the first junction conditions, we derive the second junctions conditions from the Einstein equations and the equation of motion for the scalar field. Subsequently, we study $C^1$ regular matching conditions as well as vacuum conditions at $Sigma$ both in the Jordan and Einstein frames. Our result suggests that the following configurations may be possible; (i) a vacuum thin-shell at null $Sigma$ in the Einstein frame, (ii) a vacuum thin-shell at null and non-null $Sigma$ in the Jordan frame, and (iii) a non-vacuum $C^1$ regular matching at null $Sigma$ in the Jordan frame. Lastly, we clarify the relations between the conditions for $C^1$ regularity and also for vacuum $Sigma$ in the Jordan and Einstein frames.

Download