Snow Crystals


Abstract in English

This monograph reviews our current understanding of the physical dynamics of ice crystal growth, focusing on the spontaneous formation of complex structures from water vapor (called snow crystals) as a function of temperature, supersaturation, background gas pressure, and other extrinsic parameters. Snow crystal growth is a remarkably rich and rather poorly understood phenomenon, requiring a synthesis of concepts from materials science, crystal-growth theory, statistical mechanics, diffusion-limited solidification, finite-element modeling, and molecular surface processes. Building upon recent advances in precision measurement techniques, computation modeling methods, and molecular dynamics simulations of crystalline surfaces, I believe we are moving rapidly toward the long-sought goal of developing a full physical model of snow crystal formation, using ab initio molecular dynamics simulations to create a semi-empirical characterization of the nanoscale surface attachment kinetics, and then incorporating that into a full computational model that reproduces the growth of macroscopic crystalline structures. Section 1 of this monograph deals mainly with the material properties of ice Ih in equilibrium, including thermodynamics quantities, facet surface structures, terrace step energies, and crystal twinning behaviors.

Download